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Abstract—A method is presented to reconstruct the elas-
tic modulus of soft tissue based on ultrasonic displacement
and strain images for comparatively large deformations. If
the average deformation is too large to be described with
a linear elastic model, nonlinear displacement-strain rela-
tions must be used and the mechanical equilibrium equa-
tions must include high order spatial derivatives of the dis-
placement. Numerical methods were developed to reduce
error propagation in reconstruction algorithms, including
these higher order derivatives. Problems arising with the
methods, as well as results using ultrasound measurements
on gel-based, tissue equivalent phantoms, are given. Com-
parison to reconstructions using a linear elastic model shows
that equivalent image quality can be produced with algo-
rithms appropriate for finite amplitude deformations.

I. INTRODUCTION

MAGES of mechanical displacements and strains within

soft tissue present information about the elasticity of in-
ternal structures {1]-[21]. Interpreting these images, how-
ever, can be difficult for complex mechanical objects such
as soft tissue. To potentially simplify image interpretation
and reduce artifacts due solely to object geometry, several
investigators have explored elastic modulus reconstruction
[9], [10], [17], [22]. Exact reconstruction is impossible with-
out detailed knowledge of the mechanical boundary condi-
tions (i.e., the Young’s modulus needs to be specified along
some boundary, as discussed later in this paper). Never-
theless, methods have been developed to produce relative
reconstructions, even if detailed mechanical boundary con-
ditions are unknown [9], [10].

Previous work from our laboratories has shown that the
Young’s (or equivalently the shear) modulus of soft tissue
and tissue-like phantoms can be reconstructed from me-
chanical displacement and strain images acquired during
static external deformation [5]-{10], [12], [18]-]21]. Differ-
ent imaging systems (e.g., ultrasound and MRI), as well
as different deformation procedures, were used to gener-
ate displacement and strain images. Consequently, effec-
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tive numerical methods were developed for all systems to
reconstruct the relative Young’s modulus based on a linear
elastic model. These techniques do not require any infor-
mation about global boundary conditions (i.e., mechanical
constraint of the body, its geometry, the types of external
and internal forces, etc. [9]). In principle, however, they are
limited to low magnitude external deformations in which
a linear model is valid. Here we extend these methods to
finite amplitude deformations.

Large external deformations increase the signal-to-noise
ratio (SNR) of displacement and strain images [5]-[10],
[23]. Unfortunately, large deformations of soft tissue and
tissue-like materials cannot be described with a linear elas-
tic model. A linear model can break down in two ways.
First, for most soft tissues, the elastic modulus increases
as a function of strain (i.e., strain hardening). This effect
is often referred to as “material nonlinearity.” Second, a
more complete description of the equilibrium equation, in-
cluding nonlinear strain-displacement relations, must be
used for large deformations. This effect is often referred
to as “geometric nonlinearity.” Due to the high order dis-
placement derivatives resulting from this description, error
propagation must be minimized in any reconstruction al-
gorithm using measured displacement data with a finite
signal to noise ratio.

In this paper, we examine the second form of nonlin-
earity, namely, geometric nonlinearities arising from large
amplitude deformations. These studies were conducted on
gelatin phantoms with almost no material nonlinearities
over the deformation range considered here (average strain
up to 14%). Material nonlinearities in soft tissue are con-
sidered in [24], [25]. The specific purpose of the present
study was to explore numerical methods minimizing the
effects of higher order displacement derivatives needed to
describe finite amplitude deformations on elasticity recon-
struction.

Previous algorithms for elasticity reconstruction were
formulated using the set of equations describing mechan-
ical equilibrium in a statically deformed, linear elastic
medium [5], [9], [10], [18}-[21], [24], [26]. Independent of
the specific elastic model, however, these equations can be
posed in either differential or integral form. An integral
representation is more appropriate for a nonlinear model
given realistic measurement noise. As discussed in Sec-
tion II, numerical methods have been developed for both
linear and nonlinear models exploiting an integral repre-
sentation of the reconstruction equations. The specific ap-
proach assumes a plane strain state to approximate two-
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dimensional displacement and strain images obtained with
a real-time ultrasound scanner. The full three-dimensional
problem is discussed in the Appendix.

Displacement data acquired with a real-time ultrasound
scanner were used to test the numerical methods of Sec-
tion II. Relative elastic modulus images were reconstructed
within a gel-based, tissue equivalent phantom with pre-
scribed mechanical properties using both linear and non-
linear models. Methods for displacement and strain image
acquisition are presented in Section III. All results are pre-
sented in Section IV. The paper concludes with a discus-
sion of the results in Section V.

1I. THEORY

Consider a three-dimensional (3-D) volume V of
deformed media with the displacement vector U =
U(z1,z2,23) = (u,u2,u3) in Cartesian coordinates z;,
1 =1,2,3. The volume V can be either the entire mechan-
ical body or a region of interest inside the object.

The most general nonlinear mechanical equilibrium
equations are [27]-[31].

2

3
> {Z[am(ém + ui,n)l} =0 i=1,23 (1)
n=1 J

j=1

Here o0,,; is a component of the 2nd ranked stress ten-
sor and d;, is the Kronecker delta symbol. In (1), and the
rest of this paper, the lower index after a comma means
differentiation with respect to the corresponding spatial
Lagrangian coordinate. Note that spatial coordinates and
displacement components correspond to the initial, not de-
formed, configuration of the object under investigation.
Similarly, all images are presented in the original object
geometry (i.e., before deformation).

Equation (1) must be satisfied at every internal point
of the body. If the magnitudes of the spatial derivatives
of all displacement components are small, the last terms
Ui n in (1) can be omitted, producing the familiar linear
equilibrium equations [32], [33]:

3
Y oy =0, i=1,23. ()
j=1

To complete the system of equations describing internal
deformations, the relation between stress and strain ten-
sors, as well as the relation between the strain tensor and
the displacement vector, are needed. Here we assume that
the standard linear relation between the stress tensor Oij
and the strain tensor ¢;; for incompressible media is still
valid [27]-[34]:

O = p5ij + 2}1,62'_7‘, (3)

where p is the static, internal pressure and the shear elas-
tic modulus p is considered a constant independent of the
strain magnitude. Computing the spatial distribution of
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the shear elastic modulus is the goal of reconstriction.
Note in an incompressible material, such as soft tissue,
the shear and Young’s moduli are simply proportional (i.e.,
E = 11/3). Thus, shear modulus and Young’s modtlus re-
constructions are equivalent.

In the following derivation we assume a plane strain
state in which spatial derivatives of the out-of-plaae dis-
placement ug are either zero or small compared to the
others, and the two in-plane components %; and uy do not
vary significantly as functions of the out-of-plane coordi-
nate [5], [6], [8], [10], [12], [18], [19], [21], [32]. Nonlinear
elasticity reconstruction for a general three-dimensional
strain state is considered and discussed in the App 2ndix.

Because the pressure p cannot be directly measured
with an imaging system, it must be eliminated from the
equations describing mechanical equilibrium [5], [9], [10],
[18]-[22], [26]. For the linear case, eliminating p from (2)
and (3) leads to a partial differential equation for the un-
known shear elasticity distribution p = u(z, y):

(Heay) az — (HEay) gy + 2(HEyy) 2y = 0, (4)

where the spatial coordinates z; and x5 are denoted here
by z and y. Note that the incompressibility condition, €11+
€22 = 0, is used to produce the specific form presernted in
(4). All strains in this equation are defined by the linear
strain-displacement relation:

el = 2 ). (5
The reconstruction procedure assumes that all relevant
displacements are known (i.e., measured), and solves for
the shear elasticity distribution satisfying both (1) and
the mechanical boundary conditions.

Except for the degenerate (i.e., parabolic) case corre-
sponding to an in-plane translation with rotation of the
volume as a rigid body, internal deformations are described
by a hyperbolic, 2nd order differential equation [9}, [26].
This means there is a unique shear modulus distribution
satisfying (4) given appropriate mechanical boundaiy con-
ditions. Rather than specifying displacement and stress
values at the object boundary [17], a much simpler bound-
ary value problem can be formulated using the method
of characteristics in which the modulus, and/or spatial
derivatives of the modulus are specified solely alonyg a set
of characteristic curves (see [35], Chapter 10). For the dif-
ferential equation given in (4), these curves are defiaed by
all points (z,y) satisfying the following relation:

Eaydy = (egy £ 1/e3, + €2, ) do. (6)

To illustrate how the characteristic curves of (4) help
formulate elasticity reconstruction as a simplified bound-
ary value problem, deformation data (i.e., all comp jnents
of the strain tensor) from an inhomogeneous gel-based tis-
sue equivalent phantom were analyzed. These data were
collected using the methods described in Section III. The
characteristic curves computed according to (6) over a 25-
mm by 65-mm area within the phantom are preserted in
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Fig. 1. Characteristic curves of (6) computed from ultrasound mea-
surements on the inhomogeneous gel-based phantom.

Fig. 1. Displayed here are all characteristics starting at
the bottom and left side of the region at equal (approxi-
mately 1.8 mm) intervals. If, for example, the distribution
u(z,y) is given along parts AB and AC of two intersect-
ing characteristics AB’ and AC’, then the reconstruction
for region ABDC reduces to a classic Goursat boundary
problem for (4). In contrast, to get the unique solution of
(4) within the region CEF, the values of p, du/dz, and
Op/0y must be prescribed along the single line CE (see
[35], Chapter 10).

In this paper we only consider reconstruction based on
two intersecting characteristic curves defining a region of
interest (ROI). If the exact value of the elastic modulus is
not known along these two curves, reconstruction within
the ROI is relative. That is, the reconstructed modulus is
normalized to the value along the intersecting characteris-
tics. Because the primary goal of reconstruction is artifact
reduction rather than exact quantitation, a relative modu-
lus image is sufficient. As discussed in [9], regions of nearly
constant elastic modulus can be identified with edge de-
tection operators acting on strain images.

Using the characteristic curves, numerical methods can
be developed to solve (4) given displacement measure-
ments. In practice, however, the problem of elasticity re-
construction is greatly complicated even in the linear case
due to noisy displacement measurements (i.e., due to noisy
coefficients in (4)) and propagation of this noise through
numerical integration within the ROI. Therefore, a specific
procedure to integrate (4) across the ROI must be used [5],
[8]-[10], [12], [18]-[21].

To produce a more stable reconstruction procedure ap-
propriate for noisy deformation data, substitute (3) into
(2) and integrate rather than differentiate. After eliminat-
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ing the unknown pressure, the system of equations reduces
to an integral equation of the form:

8(z,y) = 4eyyr — (Eyyt)lzo — (Eyyht)lzo,p0) +

Yy

/ ((910) 0 — {718 Y]

Yo
x

= [ 1w = {m)Huddo =0, (7

Zo

where v = 2e,, and the notations f|z0 = f(zo,y) and
flyo = f(z, yo) are used in this equation and below.

The integral equation in (7) is expressed as a functional
d(z,y), as the goal of reconstruction with noisy data will
be to force §(z,y) to approach zero in some average sense
across the ROL In contrast with (4), this equation does
not contain second order derivatives of the strain. More-
over, the shear strain, and spatial derivatives of the shear
strain, only appear in the integral terms. Because noisy
lateral displacement estimates only contribute to the shear
strain, the effects of measurement error will be reduced by
the smoothing action of the integral without sacrificing
spatial resolution [36]. This type of processing is similar to
incompressibility methods in which noisy lateral displace-
ment measurements are smoothed by integrating higher
SNR axial strains without losing spatial resolution [37],
[38]. Therefore, elasticity reconstruction by (7) should be
more stable.

For large deformations, a similar functional must be de-
fined from the general equilibrium equations of (1) and the
general Lagrangian strain-displacement relation. Denoting
the displacement components u; and ug by u and v, the
unwrapped form of (1) for the plane strain state is:

(Ozaye + Ozyy) (1 + Uz) + (Ooctzz + Oyyl yy)
H{(Ozy,z + Oyy,y) Uy + 2059U zy =0
(Tzy,z + Oyyy) (1 +Vy) + (OoaVez + oyyvyy) (8)
H(Ozz,z + Ogyy)Vz + 20240 gy = 0.
By incorporating the stress-strain relation (3) into (8) and
rearranging terms, the following linear system of equations

for derivatives of the unknown static internal pressure, p ,
and p y, results:

AV(p) = —pB - F, 9)

where

14+u, u )
A= (M0 0 )L Bl = 60 = VU

F=(fi),i=1%
V = (8/9x,0/8y), V2 =00z + 8%/0y?;
fi =2[(1 +ue)ths +uyie
+ (Exalzz + Eyylyy + 26y 2y )],
f2 =21 + (1 +vy)2
+ (mev,zz + EyyVyy + 2€va@y)l‘]>

Y1 = (Ueza),x + (UEzy),y Y2 = (HEzy) e + (HEyy) y-
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These formulas contain the components of the nonlinear
Lagrangian strain tensor [27]-[31]:

1
Eij = 3 (uiyj + U+ Zuk,iuk‘j> .

k

(10)

For a plane strain state, the strain tensor components take
the specific form:

Egz = Uy + [(u,x)2 + (0’2)2]/2,
Eyy = Vy + [(u,y)Q + ("),y)2]/2a
Eay = Uy + Uz + Uzl y +050,]/2.

(11)

If the magnitudes of the spatial derivatives of all displace-
ment components are small, the last (nonlinear) term in
(10) can be omitted to produce the linear strain tensor
of (5).

Again, the unknown pressure must be removed from
(9). To do this, we solve (9) with respect to unknowns p ;.
and p

V(p) = ap+ B, (12)

where a(z,y) = (a;) = —A7'B, B(z,y) = (8;) = —A~'F,
1 = 1,2. Then, integrating the first of these equations along
x and the second along y, two simultaneous expressions for
the unknown pressure are produced:

p(,y) = ¢1 |p(20,y) + %dw (13.1)
/3

p(z,y) = 2 p(x,yo)+/¢—2dy ,
Yo ? (13'2)

where p1(z,y) = exp{f;o al(az,y)dx} and @o(z,y) =
exp {fi ag(x,y)dy} do not depend on u(z,y). The term

p(z,y0) in (13.2) can be obtained from (13.1). Similarly,
the p(zo,y) in (13.1) can be obtained from (13.2). Conse-
quently, the set of simultaneous equations describing the
unknown pressure reduces to a single equation,

x z v
901/&‘11'—‘/72 %/édﬂv —@2/&(11;
#1 ©1 "]
Zo Yo Yo

To

Y
+or soz/%dy ~Gpo=0, (14)

Yo o

where G(z,y) = [p2(z,9)p1(z,90) — v1(z,y)p2(z0,y)]
does not depend on p(z,y), and pg = p(zo, yo)-

The expression given in (14) can be used to reconstruct
the shear modulus given large deformations. Before defin-
ing a functional similar to (7) for the nonlinear case, we
consider a simplification of the matrix A~! based on an
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assumption of incompressibility. The matrix A~! is de-

fined as:
14w, —u,
41 = Vg l+ug

det(A)

(15)

The determinant of A is simply related to the metric ten-
SOr:

det(A) =14 (uz +vy) + (Uzvy —vUy) = /7,
(16)

where g = det(gi;) is the determinant of the 2nd ranked
metric tensor g;;.

The density p of a deformed medium is related to the
density pg of the undeformed medium by [29], [37]:

P = po/\3

For incompressible materials ¢ = 1, and det(A = 1.
Therefore, (15) reduces to:

- 1+v, —u

1_ Y v

AT = ( Vg 1+u,z)'
Substituting (18) into (14) and integrating, we obtain

an expression for the reconstruction functional in the non-
linear case, as seen in (19) (top of next page), where

(17)

(18)

Y = 2eay,
91 = 2{efuyy(1+vy) —vyyuyl

F My (1+vy) = vayuyl,
92 =2{—€[V e (1 +vz) — U zzV z]

F+ VV,ey(1 +Fuz) — Ugyv,z}.

€ = Eyy — Exu,

In the limit of small displacements, « =0, p; = 1,7 = 1,2,
G(z,y) = 0, and all second order terms in g; can be ig-
nored. For this case, (19) reduces to (7). Consequent .y, (19)
can be used as the reconstruction functional over a wide
range of internal deformations. In contrast to (4), the dif-
ferential equation for the nonlinear case after eliminating p
contains 4th order displacement derivatives. Therefore, an
integral representation for the nonlinear case is also much
more appropriate given realistic measurement noise.

To evaluate either (7) or (19), spatial derivatives of
both the axial and lateral displacement components are
needed. It is well known, however, that lateral displace-
ment measurements are much noisier than axial ones if
ultrasound is used to track internal deformations (7], [37],
[38]. In addition to smoothing from the integral represen-
tation of the equilibrium equation, incompressibiliy pro-
cessing can be used in both linear and nonlinear cases to
further reduce the influence of noisy displacemen:; mea-
surements [37], [38]. All results presented in Section III
used lateral displacement estimates obtained from incom-
pressibility processing.

To solve for the unknown shear elasticity distribu-
tion p(z,y) given all measured displacements and strains
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5(2,y) = 2 {en = et + (eaatlaarll, 02 = [o = (Eumlyotal|, 01 | +
Yy
/ (Vi) = + pgelios 'dy 3 o2 — < 2 / (V1) = + pgeley ' dy 1 -
Yo Yo zo
x X

/ (Y1) + ngnleer Hdz 1 — < 1 / [(vi) .y + pgr)er 'z p| @2 —Gpo =0, (19)
zo

i Yo

within the ROI, a global minimization procedure was used
[5], [8]-{10], [12], [18]-[21]. This numerical technique is
general and applies both to linear (7) and nonlinear (19)
functionals. For a given distribution u(z,y) along the ROI
boundaries, the error functional é(z,y) must be minimized
across the ROI in some general way. Here, the specific dis-
tribution p;; = p(x;,y;) is sought which minimizes the

total error:
D= / 8%ds |,
s

where (z;,y;), 0 < i < N, 0 < j < M is a rectangular
grid covering the ROI. The integral is approximated by
summing 6(z;, y;) over all grid points.

In discrete form, when differential and integral opera-
tors are replaced by discrete-space equivalents, sinultane-
ous minimization of D with respect to all undetermined
Wi; yields a set of linear algebraic equations. In theory,
therefore, reconstruction is primarily a matrix inversion.
In practice, however, the matrix is poorly conditioned; it
is very difficult to produce a stable inverse using noisy, ex-
perimental data. Alternatively, error minimization can be
performed with an iterative approach, as discussed below.

For the nonlinear case, the unknown scalar value py =
(o, Yo) in (19) must be estimated prior to general recon-
struction. This term is estimated independently by mini-

mizing the error:
D, = / 52ds

within a thin region including the ROI boundaries, z =
zoand y = Yo, Sk = (w0 < 2z L 21,90 <y < ym) U
(zo <z < zN,y0 <y < 1), in which the distribution of
p(z,y) is assumed known given the specified values along
the boundaries themselves.

The specific iterative procedure used here to compute
the distribution p;; = p(z;,y;) minimizing either (7) or
(19) over the ROI is based on a gradient method

(20)

(21)

pit = uly — A50D /0, (22)

where k is the iteration index. It starts with a trial so-
lution p(%,7). Then, the error D is minimized by varying

the unknown shear modulus y at only one given grid point
(4,7). This procedure is repeated for each (7, j) grid point
([35], Chapter 20). The iterative parameters Af;, which de-
termine the step size of the gradient method, were chosen
based on three estimates of D. That is, the minimum of
D was locally predicted using a second order polynomial
approximation of D as a function of /.ij at each grid point
under the restriction of a decreasing error [5], [8]-[10], [12],
[18]-[21], [35]. Then, a global linear predictor was used
to update all /\fj simultaneously. This reduced the oscil-
latory nature of convergence. If the total error remained
nearly constant at a given step k based on the global lin-
ear predictor values, then the iterative step sizes /\fj were
again selected separately using the local quadratic predic-
tor as described above. By “ping-ponging” between local
and global criteria in this way, large oscillations as a func-
tion of iteration index were greatly reduced, thus speeding
convergence.

All spatial derivatives in the reconstruction equations
were replaced with 2nd order finite differences over the
same grid (z;,y;). Because 2nd order finite differences use
only information from neighboring pixels, error computa-
tions were optimized so that for each p;,;, update, the
error 6;; = 6(z;,y,) was computed only for |¢ — 4| < 1 or
|7 = 70| € 1. Computations continued until the total error
reached a stable plateau |D¥*! — D¥|/D* < ¢,. For all
results presented below, a value of g9 = 1078 was used,
and a homogeneous medium was the trial solution. It was
observed that, with different displacement fields and differ-
ent grid sizes, the algorithm demonstrates approximately
exponential convergence. By decreasing the grid size, the
rate of convergence decreased almost linearly. Typical re-
construction times on a low-end SPARC 2 workstation for
the results presented below were less than 5 minutes for
the nonlinear functional (19), and even less for the linear
functional (7). These algorithms, however, can be further
optimized for time performance, but this is beyond the
scope of this paper.

III. EXPERIMENTAL METHODS AND MATERIALS

All measurements were made with an ultrasound-based
deformational imaging system similar to the one presented
in [24]. A 38-mm wide, linear array transducer operating at
5 MHz was used for all studies. The array was driven with
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an Ultramark-9 (ATL Corp., Bothell, WA) real-time ultra-
sound system operating in conventional B-scan mode. The
digital radio frequency (RF) signal output by the beam-
former was captured before subsequent processing and dis-
play by the Ultramark-9 back-end. By buffering RF data at
the beamformer output for data capture with an external
device, live images could be viewed during data capture.
About 120 consecutive frames of real-time RF data were
stored using a digital data capture system constructed in
our lab. At a typical 35 Hz frame rate, this represents al-
most 4 seconds of phase sensitive ultrasound data that can
be used for sensitive speckle tracking.

Measurements were made on two different gel-based
phantoms. These phantoms were constructed using the
procedures described in [5]-[10]. Both phantoms were
100 mm wide by 140 mm long, where all applied surface
deformations were vertical, and the depth direction in the
ultrasound imaging plane also was vertical. The first phan-
tom was homogeneous and measured 117 mm in height.
The second was 80 mm high and included a single cylin-
drical hard inclusion near the bottom of the phantom. This
inclusion in the inhomogeneous phantom was 18 mm in di-
ameter and was oriented so that the longitudinal axis of the
cylinder was perpendicular to both the ultrasound image
plane and the direction of the applied surface deformation.
The inclusion was constructed from a higher concentration
gel. This gel had a shear modulus about 2.5 times larger
than the surrounding material as estimated from indepen-
dent measurements of the elastic modulus using the system
described in [25].

Both phantoms were vertically deformed with a
12.5 mm thick Plexiglas plate attached to a manually con-
trolled, one-dimensional motion axis. The plate measured
125 mm by 70 mm in cross section, and almost completely
covered the top surface of either phantom. Such a large
plate ensured that a plane strain state was reasonably ap-
proximated for both phantoms. A hole was cut into the
center to mount the imaging array. Once the array was
properly secured, the bottom surface of the plate main-
tained continuous contact with the top surface of the phan-
tom. Deformations were applied by smoothly turning the
gear to move the plate vertically over a distance up to
30 mm during the 4 second data capture period. Conse-
quently, very large vertical displacements could be applied
during continuous ultrasound data capture.

To test both linear and nonlinear reconstruction pro-
cedures over a wide deformational range, two data sets
were recorded for each phantom. Internal displacements
and strains were imaged in the homogeneous phantom for
applied surface displacements of 0.7 mm (0.6% average ver-
tical strain), representing a small deformation, and 7.6 mm
(6.5% average vertical strain), representing a fairly large
deformation. For the phantom with a single hard inclu-
sion, larger surface displacements were used to produce
strains within the hard inclusion comparable to the av-
erage strains in the homogeneous phantom. The two data
sets recorded on this phantom used a surface displacement
of 2.7 mm (3.4% average vertical strain) for the small de-
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Fig. 2. Measured axial displacement images from the homogzgeneous
phantom (left) and phantom with single hard inclusion at 1he bot-
tom (right).

formation case, and 12.8 mm (16% average vertical strain)
for the large deformation case.

All displacement and strain images were computed from
RF ultrasound data using the speckle tracking procedures
described in [39], [40]. Based on spatial autocorrelation
analysis of the axial, vertical strain image in the homo-
geneous phantom [39], the spatial resolution of these im-
ages was estimated to be about 1.8 mm. Conseqiently,
the grid used for all reconstructions had equal 1.8 mm
spacing in both directions (i.e., Az = Ay = 1.8 mm).
The shear modulus was reconstructed in all cases within
a 25.1 mm x 66.4 mm rectangular ROI located near the
vertical center line of the ultrasound image.

For ultrasound speckle tracking using RF data, lateral
displacement estimates exhibit significantly lower SNR
than axial (vertical) estimates [38]. To overcome this limi-
tation, incompressibility processing methods have been de-
veloped for linear and nonlinear cases [37], [38]. Fo- large
deformations, the incompressibility condition is:

(I4+vy)uzs —vzuy+v,y =0. (23)

As demonstrated in [37], the measured lateral displace-
ment image u®™P(z,y) is used as a reference during ateral
displacement computation. For the images presented here,
the reference area was a rectangle 10.5-mm wide located
near the vertical central line of the ultrasound imege. In
contrast with [37], where a polynomial approximation of
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Fig. 3. Measured lateral displacements images for the homogeneous phantom (far left) and the phantom with a single hard inclusion (second
from left). Incompressibility processed lateral displacement images for the homogeneous phantom (second from right) and the phantom with

a single hard inclusion (far right).

the unknown lateral displacement along an entire single
line yielded a solution of (23), a more flexible approach
was used here; (23) was solved for a set of particular solu-
tions of the form u,(zo,y) = ¢, p = 1,2, 3 (i.e., 3rd order)
within the region yo — A < y < yo + A for every interior
point (zg,yo). Therefore, a set of particular solutions of
(23) was obtained within this region, in which the lateral
displacement u(z,y) is a linear combination of these par-
ticular solutions. The three unknown coefficients defining
the linear combination of particular solutions were found
by minimizing the total error:

/(u — u®P)2ds (24)
Sr
across the corresponding area Sp = (z, < z < zy,

Yo — A < y< yo + A) of the referenced region.

Prior to reconstruction, both measured axial displace-
ments and incompressibility processed lateral displace-
ments were filtered with a two-dimensional Hamming func-
tion, further reducing the spatial resolution of displace-
ment images and subsequent elasticity reconstructions to
about 2.5 mm.

IV. RESULTS

Measured vertical (axial) displacement images over the
ROI for the large deformation case are presented in Fig. 2

for the homogeneous phantom [Fig. 2(a)] and the inho-
mogeneous phantom [Fig. 2(b)]. In all these images the
transducer, and hence the reference for all displacement
measurements, is at the top. Consequently vertical dis-
placements are zero at the top, and motion is toward the
transducer (i.e., negative vertical motion). The display dy-
namic range for Fig. 2(a) is —5.6 mm to —0.4 mm, and for
Fig. 2(b) it is —12.6 mm to —1.0 mm. Images of the mea-
sured lateral displacement are presented in Fig. 3 under the
same conditions for the homogeneous phantom [Fig. 3(a)]
and the inhomogeneous phantom [Fig. 3(b)]. The display
dynamic range for the homogeneous phantom is —1 mm
to 1 mm, and for the inhomogeneous phantom is —1 mm
to 4 mm, in which black represents motion to the left and
white is motion to the right. (The bottom of the phantom
shifted to the right for the inhomogeneous case, and con-
sequently an asymmetric display dynamic range is used.)
Using the measured vertical displacements of Fig. 2, the
same lateral displacement images after incompressibility
processing are presented in Fig. 3(c) for the homogeneous
phantom, and Fig. 3(d) for the inhomogeneous phantom.

Images of the shear modulus reconstructed using (7)
and (19) are presented in Fig. 4 for the homogeneous
phantom. Fig. 4(a) represents the linear reconstruction for
the small deformation case, whereas Fig. 4(b) represents
the nonlinear reconstruction. Reconstructions for the large
deformation case are presented in the lower two panels,
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0.75

Fig. 4. Elasticity distribution for homogeneous phantom reconstructed by linear processing (far left) and (second from right), and by
nonlinear processing (second from left) and (far right). Data from a 0.6% mean vertical deformation were used in (far left) and (second from

left). Data from a 6.5% mean vertical deformation were used in (second from right) and (far right).

where Fig. 4(c) is the linear reconstruction and Fig. 4(d)
is the nonlinear one. These relative modulus images are
presented over a logarithmic gray scale (0.47 to 2.12), as
illustrated on the right. The mean value of the normal-
ized (i.e., normalized to the average elastic modulus along
the boundaries of the ROI) reconstructed elasticity dis-
tribution within the ROI is 1.032 for Fig. 4(a), 1.022 for
Fig. 4(c), 0.991 for Fig. 4(b) and 0.996 for Fig. 4(d). The
standard deviation is 0.048 and 0.023 for Figs. 4(a) and (c),
and 0.033, and 0.019 for Figs. 4(b) and (d), respectively.
Artifacts in the nonlinear reconstructions are no greater
than those in the linear reconstructions even for small de-
formations. Horizontal artifacts, created by low SNR lat-
eral displacement measurements, are present in both lin-
ear and nonlinear reconstructions. With depth, these ar-
tifacts have more energy at lower spatial frequencies (i.e.,
are broader at the bottom of the image) as the lateral point
spread function of the ultrasound system broadens.

Images of the shear modulus reconstructed using (7)
and (19) are presented in Fig. 5 for the inhomogeneous
phantom. Fig. 5(a) represents the linear reconstruction for
the small deformation case, whereas Fig. 5(b) represents
the nonlinear reconstruction. Reconstructions for the large
deformation case are presented in the lower two panels,
where Fig. 5(c) is the linear reconstruction and Fig. 5(d)
is the nonlinear one. Exactly the same logarithmic gray
scale as Fig. 4 was used here. Again, horizontal artifacts

broaden with depth, becoming especially noticeable at the
bottom of these images.

In all reconstructions, the uniform mechanical hound-
ary condition u(z,y) = 1 was assumed along the edge of
the ROL Because the equilibrium equation is hyperbolic,
any errors in this assumption produce noise across the en-
tire reconstruction, where the relative magnitude >f this
noise (i.e., |t — u|/p with fi the reconstructed imaze and
1 the true image) is about the same as the magnitude of
the boundary condition error. This analysis was confirmed
by simulating numerous elasticity reconstructions o a sin-
gle hard inclusion in an otherwise homogeneous medium,
where boundary errors were modeled by a 10-term Fourier
series with random coefficients.

The results presented in Figs. 4 and 5 demonstrase that
the quality of the image reconstructed with the “geomet-
ric” nonlinear model rivals that of the reconstructior based
on a linear model, even though high order displacement
derivatives are used. Moreover, nonlinear processirg pro-
vides more consistent elasticity reconstructions even if hor-
izontal streak artifacts are slightly elevated compared to
linear processing. To illustrate this, the elasticity distri-
bution reconstructed along the central vertical line of the
inhomogeneous phantom is presented in Fig. 6 for linear
[Fig. 6(a)] and nonlinear [Fig. 6(b)] models. Clearly, non-
linear processing produces more consistent reconstructions
independent of the magnitude of the external de‘orma-
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Fig. 5. Elasticity distribution for the phantom with a cylindrical hard inclusion at the bottom reconstructed by linear processing (far left) and
(second from right), and nonlinear processing (second from left) and (far right). Displacement images from a 3.4% mean vertical deformation
were used in (far left) and (second from left). Displacement images from a 16% mean vertical deformation were used in (second from right)

and (far right).

tion. This property holds not only for single line profiles.
For the homogeneous phantom, the mean squared differ-
ence between small and large deformation images com-
puted over the entire ROI is 0.115 for the linear recon-
struction [Figs. 4(a) and (c)] and 0.076 for the nonlinear
reconstruction [Figs. 4(b) and (d)]. Similarly, for the inclu-
sion phantom, the mean squared difference between small
and large deformation images computed over the top half
of the ROI is 0.086, and over the bottom half of the phan-
tom it is 0.181 for the linear reconstruction [Figs. 5(a)
and (c)], and 0.071 for the top half of the phantom and
0.152 for the bottom half of the nonlinear reconstruction
[Figs. 5(b) and (d)].

V. DISCUSSION

The results of elasticity reconstructions presented above
show that a nonlinear (geometric) model can be used to
reconstruct the shear (or Young’s) elastic modulus based
on internal displacement and strain fields computed from
real-time ultrasound data. Despite the high order spatial
derivatives of both displacement components required for
this processing, the image quality of reconstructions based
on a nonlinear model rival those based on a simpler, lin-
ear model. Moreover, nonlinear processing provides more

consistent results so that elasticity reconstruction can be
performed over a wide range of external loading.

The specific numerical methods developed here exploit
an integral rather than differential representation of the
elasticity equations. Given noisy displacement and strain
estimates, this approach is more robust and leads to more
stable reconstructions. Moreover, coupled with an iterative
procedure using both local and global error predictors to
accelerate convergence, it can produce shear modulus im-
ages within a few minutes on a low-end, general purpose
computer. Future work will optimize software running on
more powerful workstations to reduce reconstruction times
to a few tens of seconds. Such times are appropriate for
clinical applications using real-time ultrasound data cap-
ture and specially constructed hardware for speckle track-
ing.

The fundamental hypothesis of this study is that re-
construction can greatly reduce artifacts in displacement
and strain images due to global boundary conditions. To
illustrate this point for the specific example discussed here,
the results of a simple 1-D elasticity reconstruction are pre-
sented in Fig. 7. Fig. 7 shows the normalized distribution of
1/v,y for the homogeneous phantom [Fig. 7(a)], and the in-
homogeneous phantom [Fig. 7(b)] over precisely the same
display dynamic range used in Figs. 4 and 5. Because the
homogeneous phantom was constructed to yield a nearly
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Fig. 6. Elasticity distribution along central vertical line of the inho-
mogeneous phantom images, reconstructed by linear (left) and non-
linear (right) processing.

uniform strain distribution over the ROI, the 1-D recon-
struction is almost perfect. That is, measurement noise is
not amplified for this type of processing, leading to a clean
reconstruction. In contrast, this simple approach produces
significant artifacts in images of an inhomogeneous object.
Clearly, as the object becomes more complex, more accu-
rate reconstruction is required even when uniform, one-
dimensional loading is used.

All the results presented in this paper were computed
assuming a linear stress-strain relation (3). This assump-
tion is almost perfect over a wide deformation range for the
gel-based, tissue-like phantoms used here [41]. Real tissue,
however, exhibits nonlinear behavior (i.e., material nonlin-
earity) even for simple types of external loading if the de-
formation is significant [25], [34], [42]. Because ultrasound
data can be acquired over a wide deformation range, there
is the possibility that the shear modulus can be recon-
structed at different strain magnitudes. Over a limited de-
formation range, the stress-strain curve can be considered
linear, but with an elastic modulus that depends on the
instantaneous strain magnitude. Displacement and strain
data for an ex vivo model of kidney transplant rejection
acquired over a large deformation range have been ana-
lyzed with a piecewise linear approximation to produce

IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 46, NO. 3, MAY 1999

Fig. 7. Normalized distribution of 1/v,, for the homogeneous phan-
tom (left), and the phantom with a single hard inclusion (r ght).

images related to the material nonlinearity of the kidney
[24]. Future work will combine such measuremen:s with
the methods developed here to image the nonlinear elastic
properties of tissue.
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APPENDIX

Assume that two displacement components are mea-
sured with high precision within the volume; also, as-
sume that the third component is estimated less accu-
rately, as, for example, in elasticity measurements using
MRI [18], [21].

For a general three-dimensional strain state described
by (1) and (3), the following system of equations analogous
to (9) is produced:

AV(p) = —pB - F, (A1)
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where
T4+u uig u1,3
Az,y) = up1 l4uzn uz3 ,
u3,1 uz2 l+uss
B(z,y) = (b;) = V*U.
F:
=2

=1 i,5=1

3

AV +p [ZE”U” + Z (1 zg Eu >
= (i) = ﬂEh) 1+ (pe2i) 2 + (pesi) 3, 1=1,2,3
= (8/8$1,8/8I2,8/85L‘3),

2= 92/02? + 82012 + 0% /Dl

Note that the nonlinear form of the strain tensor (10) must
be used.

To solve (Al) with respect to unknowns Op/0z:,
Op/0xa, and Ip/dxs, we first compute the determinant
of matrix A, which is

Vy V2
Wy W,

=./9,

det(A) = 1 + DivU + det <Zm ”y> + det (
x Uy
Uz Uy Uy
+ det (u’” u’z> +det | vz vy V2
Wy Wy
T Wz Wy W, o
where g = det(gi;) is the determinant of the 2nd ranked
metric tensor g;;.
Note that for incompressible materials ¢ = 1, and,
det(A) = 1 which greatly simplifies the inversion of (A1l):
V(p) =ap+ 58, (A2)
where a(ﬂf,y) = (al) = 4"4‘137 ﬁ(l‘)y) =
i=1,2,3.
By integrating each component equation of (A2) along
its corresponding coordinate, we obtain:

(ﬁz) = _A_va

p(x1, 29, 23) = L1p(2, T2, 73) + Fi
= pap(x1,79,23) + F>

= p3p(a1,72,29) + F3
where

Zq

pi(z1, T2, T3) = €xp /ai(ml,wg,xg)dx,- ,

Fi(zy,z0,23) = &daﬁ ©i,

i=1,2,3.

Using a procedure paralleling that used to produce (14),
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the three-dimensional case reduces to:
[(p23lag + P32]9)P0 + (02 F3l0g + 03 F2l00)
+ (F2 + Fs)]|001 + 2F) -
[(Prep3]20 + ©301159)P0 + (91 F5]00 + w3F1lsg)
+(F1 + F3)]|x°<ﬂ2 +2F, = (A4)
[(prep2lae + p201l29)P0 + (01 F2]00 + @2F1l4g)
+ (F1 + F2)]|agps — 2F3,

i

where pg = p(x9,23,23). For a plane strain state (A4)
reduces to (14).

Again, in the limit of small displacements, o =0, p; =
1,i=1,2,3, (A4) can be greatly simplified:

(Fla + Falyg + Fo + F3)lp0 +2F1 =
(Falo0 + Filgg + F1 + F3)lpg + 282 =

(Fala0 + Filzg + Fi + F2)log + 2F5,  (AD)
where
1
Fy =24 (penn)lzy — penn — /[(u€12),2 = (pe1s) sldrr o,
g
3
Fy =2 ¢ (pen)lsy — peze — /[(ufm),l — (pe2s) aldzs ¢
=5
x3
F3 =2 ¢ (nes3)lag — pess — /[(Nsla),l — (pe23) 2] dxs
z§

Equations (A4) and (A5) do not contain high order spatial
displacement derivatives, compared with their equivalent
differential equations, and therefore, elasticity reconstruc-
tion by (A4) and (A5) should be more stable. Again, (A4)
and (A5) show that spatial derivatives of all displacement
components are needed in general for elasticity reconstruc-
tion in both linear and nonlinear cases, but any one of
the three displacement components can be reconstructed
using incompressibility processing based on the relation

(det(A) = 1) [37).
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