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Abstract—Using the incompressibility property of soft
tissue, high quality lateral displacement distributions can
be reconstructed from accurate axial displacement mea-
surements and noisy lateral displacement estimates. Previ-
ous methods appropriate for small deformations have been
extended for high magnitude deformations requiring a non-
linear model. Problems arising in incompressibility process-
ing for large deformations are considered. Applications of
nonlinear incompressibility methods to ultrasonic measure-
ments on gel-based, tissue equivalent phantoms are given.
Lateral displacement images reconstructed with nonlinear
methods are compared to those reconstructed with linear
methods for both small and large deformations.

I. INTRODUCTION

HE ULTIMATE GOAL of elasticity imaging for biomed-
Tical applications is to reconstruct the shear (or
Young’s) elastic modulus of soft tissue from measurements
of internal mechanical deformations. For general bound-
ary conditions, all displacement components and spatial
derivatives of the displacement must be used for an accu-
rate reconstruction even assuming a linear theory of elas-
ticity [1]-[3]. Lateral displacement estimates are less ac-
curate than axial, however, if ultrasound images are used
for motion tracking [4]-[7]. We previously showed that the
incompressibility property of soft tissue can be exploited
to greatly improve the accuracy and signal-to-noise ratio
(SNR) of ultrasonic lateral displacement measurements [6].
Such processing is based on a kinematical incompressibil-
ity condition and can be used for elastic, viscoelastic, or
inelastic but incompressible materials. The specific meth-
ods presented in this previous work were based on a linear
strain-displacement relation assuming small displacements
and strains. They fail in the limit of large strains. Because
large applied deformations can enhance the SNR of dis-
placement and strain images, it is necessary to extend in-
compressibility methods to the high strain regime where a
nonlinear representation of the strain tensor must be used.
This extension is key to developing a fully nonlinear recon-

Manuscript received March 17, 1997; accepted October 28, 1997.

A. R. Skovoroda is with the Institute of Mathematical Problems of
Biology, Russian Academy of Sciences, Pushchino, Moscow Region,
Russia 142292.

M. A. Lubinski, S. Y. Emelianov, and M. O’Donnell are with the
Biomedical Engineering Department, and Electrical Engineering and
Computer Science Department, University of Michigan, Ann Arbor,
MI 48109-2125 (e-mail: odonnel@eecs.umich.edu).

struction procedure appropriate for large deformations.

In Section II, an algorithm for nonlinear lateral displace-
ment reconstruction assuming a plane strain state is pre-
sented in detail. In the following section, this algorithm
is tested using experimental displacement images of tissue
equivalent, gel-based phantoms.

II. THEORY

Consider large deformations of a constrained mechan-
ical body such that the linear theory of elasticity is not
adequate to describe internal displacements and strains.
For this case, the nonlinear components of the Lagrange
strain tensor in Cartesian coordinates, €;;, 4,7 = 1,2,3,
take the form [8]-[11]:

1
eij = 5t + g+ > kit g), (1)
k

where the displacement vector is defined as U =
(w1, u2,u3), and the spatial derivatives of u; with respect
to Lagrangian coordinate x; in the strain equation are de-
noted by u; ;, L.e., u; ; = Ou;/0z;.

If the magnitudes of the spatial derivatives of all dis-
placement components are small, the last nonlinear term
in (1) can be omitted and the strain tensor reduces to its
linear form,

in 1
S 5 (Wi +uji)- (2)

For incompressible materials, the deformations are iso-
choric and must satisfy the condition [12]:

det F =1, (3)

where F' is a deformation gradient, defined as Fj; = 6;; +
Ui,y i.e.,

14+u, uy U,
F = ve l+wvy v, . 4)
w7m w7y 1 + w7z

In (4), spatial coordinates x1, z2, and x3 are denoted by z,
y, and 2. Similarly, the displacement components wu;, us,
and ugz are denoted by u, v, and w.
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In the main body of the paper, we consider a plane
strain state appropriate for two-dimensional ultrasound
imaging. As shown previously, a plane strain state, where
the out of plane displacement w is either zero or small com-
pared to the other components, and the two in-plane com-
ponents © and v do not vary significantly as functions of
the out-of-plane coordinate, can be closely approximated
with a simple deformational system [2], [3], [6], [13]. In
the Appendix, the general three-dimensional strain state
is considered.

For the plane strain case, the deformation gradient is
defined as:

14+uz uy O
F= vy 14w, 0], (5)
0 0 1

where the derivatives of the out-of-plane displacement w
vanish, and only spatial derivatives of both the accurately
measured axial displacement v(z,y), and the less accu-
rately estimated lateral displacement u(z,y) are present.

Tnserting (5) into (3), the incompressibility condition
under a plane strain can be expressed as a partial differ-
ential equation,

Ugp+ Uy +UgUy — VU, =0. (6)

Note, that if the magnitude of spatial derivatives of dis-
placement components is small, the nonlinear terms in (6)
can be omitted and the equation reduces to the linear in-
compressibility condition, V-U = v z+wv, = 0. This linear
approximation has been used previously for lateral dis-
placement estimation [6]. In the nonlinear case, however,
the more complex incompressibility condition (6) contains
all first spatial derivatives of displacement vector compo-
nents, Uz, Uy, vz, and v,. Consequently, the straightfor-
ward method presented in our previous work [6] cannot be
used for large deformations.

Equation {(6) represents the most general form of the
incompressibility condition for a plane strain state. To es-
timate the lateral displacement u(x, y) from accurate axial
displacements v(x,y) using this equation, we rewrite it in
a form more appropriate for numerical processing:

()

Written in this way, it’s clear that the incompressibility
condition (7) relates the two spatial derivatives of the lat-
eral displacement u, given that v .(z,y) and v, (x,y) are
directly computed from accurate axial displacement mea-
surements and, therefore, can be considered known func-
tions. Consequently, (7) can be solved numerically over a
region of interest (ROI) if the lateral displacement distri-
bution u(zg, y) = uo(y) is known for any single line x = xo.
To solve (7), the ROI is discretized using a rectangular
grid (z;,y;), 1 <1 < N, 1 <7 < M, and the position
zg corresponding to ug(y) is specified along the grid at
x = z;,. Given this formulation, (7) can be rewritten as:

Uy = (Vpty —vy)/(1+ U,y)-

U,m(iaj)a,y(i7j) — U,y(iuj)
14 v,(%,7) ’ (8)

U,0(1,4) =
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where @ 4(2,7) and @ ,(4,7) are the finite difference ap-
proximations of derivatives v, and u, at the grid point
(@i,y7)- At i = ig the lateral displacement is u(ig,j) =
uo(4). Consequently, % , (49, 5) can be simply computed at
each j using a finite difference form of the spatial deriva-
tive. Denoting this function as f(j) = 4,40, 7), (8) re-
duces to

”U,a:(iaj)f(j>7vvy(i’j). (9)

a,m(i()vj): 140 (Z j)
YD

The displacement along lines ¢ = iy £ 1 can be obtained

from (9) using the one-sided finite difference approxima-
tion of @ 4 (%0, J),

uliog = 1,7) = uo(y) £ htt (30, 7),

where h is a grid step in the x direction. Starting from
ig, the procedure bootstraps out to other positions (i.e.,
where 7 does not equal ip &+ 1) using the symmetric, 2nd
order, finite difference approximation of @ (4, j),

(10)

w(i £1,7) = u(i T 1,5) + 2hii . (i, 7).

(11)

For example, the lateral displacement at (ig + 2, 7) is:

where 4 4 (ig+ 1, j) can be computed from (8) using a first
order (j = 1 or § = M), or second order (1 < j < M),
finite difference approximation of 4, (io+1, 7) given u(io+
1, 7). Therefore, the distribution u(z,y) can be estimated
throughout the entire ROI if the distribution u(zg,y) =
uo(y) for any line z = zg is known.

The one-dimensional distribution ug(y) can be accu-
rately estimated from noisy measurements of the lateral
displacement u™(z, y) over the ROT using a procedure sim-
ilar to the least squares method described in [6]. Accord-
ingly, the total error ||ju — u™| is minimized across the
area S of the ROI to find the unknown function f(j). Here
u(z,y) is the numerical solution of (8), u™(z,y) is the mea-

sured lateral displacement and | f|| = [[f ¢ f(z,y)? ds] 1/2
is the norm of the function f(z,y). In contrast with the
linear case [6], this minimization problem has no analyt-
ical solution due to the specific form of (6). Therefore, it
must be solved numerically.

For the results presented below, numerical minimization
was simplified using a polynomial representation of uo(y).
Because (6) is linear with respect to the unknown function
u(z,y), this equation was solved for a set of particular so-
lutions of the form wu,(zg,y) = ¥, p = 1,...,F, where
P is a desired order of the polynomial approximation of
ug(y). Therefore, a set of particular solutions u,(x, y) of (6)
was obtained. The unknown polynomial coeflicients were
defined by minimizing the total error |u — ¢™||, where
u(z,y) is a linear ‘combination of u,(z,y). The unknown
polynomial coefficients were found by solving the corre-
sponding systemn of linear algebraic equations. In partic-
ular, a 6th order polynomial approximation of ug(y) was
used, although the final results were not sensitive to the
specific order selected.
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IT1. EXPERIMENTAL METHODS AND MATERIALS

Experiments were performed on a pair of cylindrical,
gel-based phantoms. Methods to fabricate these phantoms
and to measure internal displacement and strain distribu-
tions within the phantoms due to externally applied sur-
face deformations are detailed in previous publications [1],
[2], [7]. Briefly, both phantoms were 88 mm in diameter,
but one was homogeneous, and the second had a cylindrical
hard inclusion with diameter of about 32 mm located near
the center of the phantom. The material forming the inclu-
sion had a Young’s modulus about 2.5 times larger than
that of the surrounding material. Phantoms were placed in
a water tank with a 3.5 MHz, 128 channel, one-dimensional
transducer array attached to the bottom, and a hydrauli-
cally driven 14 mm wide piston positioned at the top to
produce incremental surface deformation of the phantom.

A large set of complex, baseband images (i.e., ultra-
sound images retaining phase information) were acquired
during surface deformation, where consecutive measure-
ments were separated by a piston displacement of 300 pm,
and differential displacement and strain images were com-
puted. To test the nonlinear lateral displacement recon-
struction method described above for both small and
high magnitude deformations, differential displacement
and strain images were accumulated to produce compiled
images corresponding to approximately 6.8% and 20.5%
mean strain (6 mm and 18 mm total surface displacement)
along the vertical central line of the phantom cross-section.
In all cases presented below, the compiled images are dis-
played in the initial undeformed geometry of the phan-
toms. Finally, the ROI was chosen as a 44 mm by 44 mm
square located near the center of the phantom.

IV. RESULTS

Measured axial displacement images v™(z, y) within the
44 mm by 44 mm ROI are presented in Fig. 1. The two
left panels were acquired with a 6 mm surface displace-
ment, whereas the two right panels were acquired with an
18 mm surface displacement. Results from the homoge-
neous phantom are presented on the top, and results from
the inhomogeneous phantom are presented on the bottom.
The two left-hand panels, corresponding to the small de-
formation, are displayed over a dynamic range of 1.95 to
3.95 mm. Similarly, the two right-hand panels, correspond-
ing to the large deformation, are displayed over a dynamic
range of 4.5 to 12.0 mm.

The absolute value of measured v7(z,y) distributions
within the ROI are presented in Fig. 2. Again, the two left-
hand panels represent the small deformation case, the two
right-hand panels the large deformation case, the two top
panels the homogeneous phantom, and the two lower pan-
els the inhomogeneous phantom. The two left-hand panels
are displayed over a dynamic range of 2.75% to 7.75% and
the two right-hand panels are displayed over a dynamic
range of 11.0% to 29.0%. The hard inclusion is clearly
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indicated by the dark area near the center of Figs. 2(b)
and (d), similar to previously reported results [1]-[3].

Although the measured v™(z,y) and v} (x,y) distribu-
tions of Figs. 1 and 2 exhibit reasonable contrast to noise
ratio, they are still too noisy to use directly in a quanti-
tative reconstruction of the lateral displacement. As dis-
cussed in [7], the specific method used here for strain and
displacement imaging includes a spatial filter limiting the
resolution of v™ (z,y) and v7 (z,y) images to 2.5 to 3 mm.
In addition, this same filter does not completely suppress
high spatial frequency noise. Because spatial derivatives
of both quantities are used for lateral displacement recon-
struction, noise at high spatial frequencies, even of small
magnitude, can have significant impact. To overcome this
limitation, both v™(z,y) and v") (x,y) have been spatially
filtered to eliminate unwanted high frequency noise yet
preserve the spatial resolution of the original displacement
and strain images.

The filtering approach used here was based on a Fourier
series fit to both displacement and strain images. First, a
58 mm X 58 mm region centered on the ROI was used in
a least-squares fit to a K term, two-dimensional Fourier
series representation of the images. For a strain image, it
takes the form:

ol (2,y) =
1 an (x —x1)
— 41
5 §A11 + nEIQ Aln COs (ﬂ'(n — 1)—X—> +
Ky+1 Ke+1
1 —
kE:2 [EAkl -+ E Akn COS (TF(’I’L - 1)($Txl)‘> X

[N CEE) S

where X = xy — 21 and Y = yp; — y1 are the dimensions
of the ROI, K = K, = K, is the order of the fit, and
Ay are Fourier coefficients. A similar fit was performed
for v* (2, y). The term vX (x,y) was obtained by differen-
tiating v* (,y) along the x direction.

Because the spatial resolution of the strain images is
about 2.5 to 3 mm, the Fourier series was terminated
at 19 terms (i.e., K = 19). The resultant Fourier coef-
ficients from the fit produced filtered displacement and
strain images over the 44 mm x 44 mm ROI. The larger
58 mm X 58 mm region was used for the fit to eliminate
boundary effects on this Fourier approximation within the
ROL Filtered v™(z,y) and v7(z,y) distributions corre-
sponding to the same data as Figs. 1 and 2 are shown
in Figs. 3 and 4. Precisely the same display format and
dynamic range are used for these images.

Measured lateral displacement images «™(z,y) within
the ROI are presented in Fig. 5. Once again, the two left
panels represent the small deformation case, the two right
panels the large deformation case, the two top panels the
homogeneous phantom, and the two lower panels the in-
homogeneous phantom. The two left panels are displayed
over a dynamic range of +1 mm, where black represents
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(b) (d)

on of interest. The left two panels (a, b) were produced
urface deformations. The top two panels (a, ¢)
om with a single hard inclusion at the

Fig. 1. Measured axial displacement, v (z,y), images in a 44 mm X 44 mm regi
with small surface deformations and the right two panels (¢, d) were produced with large s
correspond to the homogeneous phantom, and the bottom two panels (b, d) correspond to the phant

center.
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(b) (d)

Fig. 2. Measured normal, axial strain, v”;‘(x, y), images for the same cases presented in Fig. 1.
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(b)

Fig. 3. Fourier filtered images of the axial displacement distributions of Fig. 1.
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(b)

Fig. 4. Fourier filtered images of the normal, axial strain distributions of Fig. 2.




498 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 45, NO. 2, MARCH 1998

(b)

Fig. 5. Measured lateral displacement, u™(x,y), images for the same cases presented in Fig. 1.
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Fig. 6. Reconstructed lateral displacement images for the same cases presented in Fig. 1.
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(b)
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(d)

Fig. 7. Difference between linear and nonlinear reconstructions of the lateral displacement, Au = lin — ynonlin o1 the same cases presented

in Fig. 1.

motion to the left (i.e., negative lateral displacement) and
white represents motion to the right (i.e., positive lateral
displacement), and the right panels are displayed over a
dynamic range of 3.5 mm. There are significant artifacts
in these images due to imperfect beam forming in the syn-
thetic aperture system used for data acquisition [6]. Be-
cause of the poor contrast to noise ratio in these images,
the hard inclusion is difficult to identify.

Images of the lateral displacement wu(z,y) within the
ROI reconstructed by (8) are presented in Fig. 6. These

reconstructions used the filtered versions of v (z,y) and
v (z,y) presented in Figs. 3 and 4. The display format
and dynamic range of Fig. 6 are identical to those used
in Fig. 5. Variations in the lateral displacement are now
clearly seen in the lower two panels around the region of
the hard inclusion.

Fig. 7 presents the difference between linear and non-
linear reconstructions of the lateral displacement, Au =
ylin_yponlin whaere 1 is estimated by the linear approach
of [6], and u®°™li® ig estimated by the nonlinear approach
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TABLE 1
COMPARISON OF LINEAR AND NONLINEAR RECONSTRUCTION OF THE LATERAL DISPLACEMENT.

Surface/piston
displacement 6 mm 18 mm
Phantom Homogeneous Inhomogeneous Homogeneous Inhomogeneous
[jutin — qnonlin| /jjq,lin ) 0.059 0.067 0.256 0.280
(0.073) (0.257)

presented in this paper (Fig. 6). Once again, the two left
panels represent the small deformation case, the two right
panels the large deformation case, the two top panels the
homogeneous phantom, and the two lower panels the in-
homogeneous phantom. All images are displayed over the
same dynamic range of +0.2 mm. Clearly, the difference
between linear and nonlinear reconstructions is larger for
the large deformation.

The qualitative differences presented in Fig. 7 are quan-
titated in Table I, where the relative difference between
linear and nonlinear reconstructions averaged over the en-
tire ROI are presented. For the homogeneous case, the
same computation was made using analytic expressions
for the internal displacement and strain in both linear and
nonlinear cases. The homogeneous rectangle was deformed
between two parallel rigid plates with slippage allowed on
the boundaries of the object and the plates. For the linear
case, it can be easily shown that the lateral displacement
reduces to the expression:

(14)

where H is the height of the rectangle, and Vj is the surface
displacement of the plate.

For the nonlinear case, it can be easily shown that the
lateral displacement reduces to the expression:

Vo
H -V

u= x. (15)

Based on these analytic results, the expected relative
difference between linear and nonlinear values is presented
in parenthesis. Clearly, measurements parallel expected re-
sults.

Based on these results, and the images of Fig. 7, it’s
quite clear that both absolute and relative differences are
most pronounced for the large deformation case. Conse-
quently, nonlinear methods must be used to accurately
reconstruct the lateral displacement using the incompress-
ibility property of soft tissue if large deformations are ap-
plied.

Also, note that the influence of nonlinearities can be dif-
ferent within an inhomogeneous object. Figs. 7(c) and (d)
illustrate this effect. In the area of the hard inclusion the
magnitude of Aw is comparatively smaller because the flex-
ibility of the inclusion is smaller than that of surrounding
material, and therefore, the magnitude of spatial deriva-
tives of the displacement is reduced. For the case of softer

inclusions compared to the background, the strain can be
amplified, thus heightening the influence of nonlinearities.

V. DISCUSSION

If deformations, and corresponding internal strains, are
significant, then a nonlinear mechanical model must be
used. As demonstrated here, the effect of nonlinearities
can be included in a more general form of incompress-
ibility processing to produce lateral displacement images
from noisy lateral displacement estimates and high qual-
ity measurements of the axial displacement. Comparison
of measured and reconstructed lateral displacement dis-
tributions clearly shows that incompressibility processing
greatly improves the accuracy and SNR for both linear and
nonlinear cases.

Given accurate axial and lateral displacement distribu-
tions, we have demonstrated previously that high quality
elasticity reconstructions can be performed using a linear
mechanical model [3]. Based on the nonlinear incompress-
ibility processing methods detailed in this paper, future
work will focus on developing a fully nonlinear elasticity
reconstruction approach appropriate for the case of large
deformations.

APPENDIX

Assume that displacement components v(x,y,z) and
w(x,y, 2) are accurately measured within the volume and
displacement component u(x,y, z) can be estimated less
accurately, as occurs, for example, in elasticity measure-
ments using NMR [14], [15]. For this three-dimensional
strain state, the general incompressibility condition (3) can
be written in a form of the partial differential equation in-
corporating (4) into (3):

(g + vy +w,)+ det <“z “y) + det (”*f ”’Z>
Ve Vy

Wy W,z
u » uiz u7m u’y u?'z
+det| wol T det | v vy v, ] =0. (Al)
s W Wy W

Note again, that if the magnitudes of spatial derivatives
of the displacement components are small, the nonlinear
terms in (Al) can be omitted, and (A1) reduces to the
linear incompressibility condition V- U = u z+v,+w, , =

0.
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(Ve +Vw,. —

VW )ly + (W + VW —

VaWy) U,z + (ViWy — VW ) — Uy — W,

Uy =

7 L4 (vy +we) + (vyw, —vwy)

2 (A2)

To estimate u(x,y, z) for the full nonlinear case, (Al)
can be shown in {A2) at the top of this page. This equation
also can be solved numerically in the three-dimensional
region of interest if the distribution u(zo,y, z) = uo(y, 2) is
known for any plane x = xy. For this purpose, the ROI can
be covered by a three-dimensional grid (z,,y;,2), 1 <t <
N, 1<j3<M,1<k<K,zy=zy,and a finite difference
approximation of derivatives u, and u,, and u , at all
grid points (z;,y;, 2x) should be used, as done above for
a plane strain state. Note here that all formulas presented
in this appendix reduce to the corresponding formulas of
Section II under the restriction of a plane strain state.

Again, the unknown function ug(y, z) can be found by
minimizing the total squared error Q(u, u™) across the vol-
ume V of the ROI, where u(z, y, 2) is the numerical recon-
struction of the noisy measured displacement component,

u™(xz,y, 2), and Qu,u™) = [[f(u—u™)*dV.
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