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Tissue Elasticity Reconstruction Based on
Ultrasonic Displacement and Strain Images

A. R. Skovoroda, S. Y. Emelianov, and M. O’Donnell, Fellow, IEEE

Abstract— A method is presented to reconstruct the elastic
modulus of soft tissue based on ultrasonic displacement and strain
images. Incompressible and compressible media are considered
separately. Problems arising with this method, as well as ap-
plications to real measurements on gel-based, tissue equivalent
phantoms, are given. Results show that artifacts present in strain
images can be greatly reduced using a hybrid reconstruction
procedure based on numerical solution of the partial differen-
tial equations describing mechanical equilibrium of a deformed
medium.

I. INTRODUCTION

MAGING internal soft tissue displacements and strains re-

sulting from mechanical forces applied to the body surface
is rapidly developing into a new diagnostic modality [1]-[32].
Internal deformational images, however, emphasize both the
spatial distribution of the Young’s or shear modulus and
global boundary conditions, including mechanical constraint
of the body, its geometry, the types of external and internal
forces, etc. That is, displacement and/or strain images may
exhibit significant artifacts due to global boundary conditions,
as discussed in [28], [29]. The primary objective of the
work described here is to significantly reduce artifacts in
elasticity images by directly reconstructing and imaging the
elastic Young’s modulus. Although absolute quantitation may
ultimately be important for certain applications, differential
diagnosis based on tissue elasticity will probably be based
on relative modulus reconstruction. We strongly believe that
artifacts due solely to global boundary conditions must be min-
imized for elasticity imaging to become a routine diagnostic
procedure.

Computing the mechanical properties of a medium based
on its response to mechanical action can be posed in a
number of ways. In this paper we have used two different
formulations of elasticity reconstruction. The first starts with
the complete spatial distribution of the strain tensor or dis-
placement; the second uses limited experimental data such as
an image of a single strain component. Because of physical
limitations inherent in measuring internal displacements and
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strains with an ultrasound imaging system, i.e. limitations
of traditional longitudinal speckle tracking algorithms for
large absolute displacements and the poor accuracy of lateral
displacement measurements (due to lower spatial frequencies
laterally), work to date has focused on estimating elastic
moduli with limited deformational information [17], [21],
[24], [28], [29]. Based on simplified models of both the
elastic modulus distribution in the body and the mechanical
boundary conditions, these methods are accurate only in
limited applications or, otherwise, produce large artifacts in
the elasticity reconstruction [29]. Consequently, expanded
reconstruction methods are needed to handle more complex
objects and boundary conditions. In this paper, we explore
new reconstruction methods based on quantitative strain and
displacement images.

In the theory section, the general approach to reconstruction
based on the common model of linear, elastic, isotropic,
incompressible media is presented. Compressible media are
considered in Appendix 1. Following that, a hybrid reconstruc-
tion procedure independent of global boundary conditions is
described. Also presented here are practical methods to esti-
mate the elastic modulus using only limited experimental data,
i.e., only accurate measurements of the axial displacement
and longitudinal strain. Some additional cases of elasticity
reconstruction based on limited measurements are considered
in Appendix I The details of the hybrid reconstruction method
based on internal tissue displacement and strains estimated
from ultrasonic images is described in the next section. In the
results section, a specific reconstruction algorithm appropriate
for a plane strain state is tested using experimental images of
internal deformations in tissue equivalent, gel-based phantoms.
These displacement and strain images were made with an
ultrasound-based deformational imaging system described in
[271-[29]. The paper concludes with a discussion of the results.

II. THEORY

Consider a three-dimensional (3-D) volume V of deformed
media with the displacement vector U = (u1, up, u3) in
Cartesian coordinates X = (z1, Z2, £3). Yolume V can be
either the entire mechanical body, or a region of interest (ROI)
inside the object under study.

The most general form of Newton’s 2nd law describing the
motion of a mechanical body under static deformation (i.e.,
the equilibrium condition) is,

3
Y oy tfi=0, i=1,23 M
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where o;; is one component of the 2nd ranked stress tensor and
fi is the body force per unit volume acting on the body in the
z; direction [29], [33]-[35]. This model applies for soft tissue
at a spatial scale sampled by diagnostic ultrasound (i.e., at a
scale greater than or comparable to an ultrasound wavelength).
In (1), and the entire paper, the lower index after a comma
means differentiation with respect to the corresponding spatial
coordinate. Equation (1) must be satisfied at every internal
point of the body. We should also note here that most soft
tissues and tissue-like materials (with the exception of lung,
for example) can be considered incompressible [36], i.e., the
Poisson’s ration is equal to 0.5. In the main body of the
paper only incompressible media are considered. Compress-
ible media (i.e., Poisson’s ratio less than 0.5) are discussed
separately in Appendix I. Treating slightly compressible media
as completely incompressible greatly simplifies the partial
differential equations describing internal deformations and
permits stable numerical solution of these equations. A com-
plete compressible description, although theoretically more
accurate, often leads to unstable numerical solution in the limit
that the Poisson’s ratio approaches 0.5.

Assuming linear elasticity, the components of the stress
tensor in an isotropic, continuous, incompressible medium
under static deformation are:

o5 = poij + 2 peqj, @
where p is the static internal pressure, defined as [37]

Vlirllco [A(divU)] = p. 3)

divu—o

In (2) é;; is the Kronecker delta symbol and €45 is one
component of the 2nd ranked symmetric strain tensor, defined
as

B 1 [/ Ou, +8uj
fij = 5 (8.’1]] + 8.731) (4)

where u; is one component of displacement vector U =
(u1, ug, uz). Note that a pressure term must be included in (2)
to fully describe deformations in incompressible media. Also,
some tissues, such as muscle, are anisotropic [35], necessitat-
ing a more general stress-strain relationship [33], [34]. In this
paper, however, only isotropic media are considered.

In (2) and (3) the parameters A and p are Lame coefficients.
In general, the longitudinal Lame coefficient A and shear
modulus p describe the elastic behavior of a mechanical
body. However, with assumption (3), any statically deformed,
isotropic, continuous, incompressible mechanical body can
be completely characterized by a spatial distribution of a
single material parameter, either shear modulus 1 or Young’s
modulus F since they are simply proportional to each other,
ie. E = 3pu. Note that this is a fundamental difference
between incompressible and compressible media. That is,
the Young’s modulus completely describes the static elastic
properties of soft tissue, where its value may vary widely
between different tissues (see, for example, reference [31]).

In addition, the incompressibility condition leads to the
following relationship between displacement or strain com-
ponents

divU = €13 + €22 + €33 = u1,1 +ug,2 +ug,3=0. (5)

The main goal of elasticity imaging is to reconstruct the
elastic modulus of any desired tissue region using available
measurements of strain and displacement components. The
Young’s modulus E is an arbitrary function of position, i.e.

E(X) = Eok(X) ©

where Ey is a constant and k(X)) is not generally a continuous
function. Elasticity image reconstruction, therefore, centers on
estimating &(X).

Elasticity reconstruction in an isotropic medium must ac-
curately represent both continuous and discontinuous changes
in the modulus. Both types of spatial variation are illustrated
in Fig. 1 for a single abnormality (i.e., inclusion) in an
otherwise homogeneous medium. Small fluctuations in the
modulus throughout the image plane represent local changes
not indicative of true material differences. In Fig. 1(a), a
clearly bounded inhomogeneity (“inclusion”) with a discon-
tinuous change in elastic modulus is illustrated. For this
type of abnormality the magnitude of spatial changes in the
elastic modulus at the boundary is much larger than any
small scale fluctuations present. In contrast, a continuous
inclusion with finite derivatives everywhere is presented in
Fig. 1(b). Depending on the size and elasticity contrast of
the inclusion, derivatives in the elastic modulus may be only
slightly larger than small scale fluctuations in the medium.
Both types of inclusion are important, however, and represent
reasonable assumptions for a large set of tissue abnormalities.
Due to elasticity variability and errors in strain measurement,
reconstruction approaches for these two types of abnormalities
may differ.

A. Bounded Inhomogeneities

We focus first on local, clearly bounded inclusions having
a boundary G and residing in tissue with otherwise smoothly
varying mechanical characteristics, as illustrated in Fig. 1(a).
For this type of inclusion the unknown %(X) is not a continu-
ous function, i.e. it has a discontinuity at the boundary G. Note
that the position of the boundary G is also unknown a priori
and needs to be determined. Therefore, the reconstruction
problem reduces to detecting the unknown inclusion bound-
ary and, consequently, reconstructing the unknown Young’s
modulus at this boundary.

The stress continuity condition at the boundary G has the
form [34]:

3 3
D loulng = (6t —oin; =0,i=1,2,3 (D)
j=1 j=1

where the square parentheses denote discontinuity of the
corresponding external and internal terms at boundary points
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(a)

Fig. 1. Elasticity distribution for (a) discontinuous, i.e., clearly bounded and (b) continuous inclusions.

XG C G, and n; is the jth component of the unit normal
vector n = (ni,n2,n3) at the boundary. In this and the
following equations superscripts “int” and “ext” refer to
internal and external variables at boundary points. Note that for
any other point of the volume V inside or outside the inclusion,
the stress continuity condition (7) is automatically satisfied for
any arbitrarily chosen direction of a normal vector.

Assuming an incompressible, isotropic medium, substituting
expression (2) into (7), and combining the results, the stress
continuity condition becomes:

Pty + 2 pt (effn + e55tns + Ef{gtns)
=p™n + 207 (1] + €13 na + e na)
Pt o+ 2 ™ (€5 ) + e55tng + €55 n3)
=pny + 2 (68300 4 ety + ebing)
P na+ 2 (€55 0y + €55 02 + €55 n3)
=p™ng + 2 ,ui”‘(eilgtnl + E;T:;tng + E?ﬁt’fl‘g). ®)

Since the pressure p cannot be directly measured by imaging
systems, it is analytically eliminated from the stress disconti-
nuity equations resulting in the following pair of equations
[26]:

Tlnina (et — 55°) + [(n2)” — (n1)?]
- 55t 4+ na(noefst — naefdh)] = nina(el} — e5')
+[(n2)? = (n1)?]els + na(noely’ — miesy)
Tlnyns(e53t — e55Y) + [(na)® — (m1)?]

- €55° + na(naefs’ —n1essh)] = mina(eli’ — i)

+[(n3)? = (n1)?]el’ + na(naels’ — maess?). ©)

In (9) the ratio of shear or Young’s moduli, p®%t/u'™t =
Eext / Et_is denoted by I'. Compressible media are treated
separately in Appendix I.

Both inclusion boundary detection and Young’s modulus
reconstruction at this boundary are based on (9) and performed
in two steps. First, experimentally derived (9) are solved with
respect to I' for an arbitrarily chosen direction of the normal
vector n = (ny, ng, n3). At any boundary points where the
direction of the “testing” normal vector coincides with the
direction of the real normal vector, the true value of I is
obtained. At other points, however, the value I' will not rep-
resent the exact value but will highlight inclusion boundaries.

5
‘fg\t\:{g&\\\
‘A‘?:.t“:

(b)

This procedure can be repeated for several directions of the
normal vector to complete boundary detection. Next, after
the inclusion boundary is identified, the true value of I' can
be calculated at boundary points since the direction of the
normal vector will be predicted after the boundary detection
procedure previously described. Note that if all components
of the strain tensor are known, the first equation in (9) can
be used to detect the boundary of the inclusion and then
determine the value of ' (i.e., relative Young’s modulus ratio
at this boundary), and the second one to estimate the accuracy
of experimental strain measurements in the neighborhood of
the boundary point Xg. Also, if the mechanical properties
do not vary significantly inside the inclusion, reconstruction is
complete since the Young’s modulus at the boundary is found.

Equation (9) can also be used for boundary detection of
more complicated elasticity inhomogeneities. If the Young'’s
modulus changes smoothly both inside and outside the inclu-
sion, then experimentally derived (9) solved with respect to r
for any chosen direction of the vector n will give smoothly
varying results everywhere except at boundary intersection
points. Although the value I' will not represent the exact
value, this will highlight inclusion boundaries. In general, this
approach produces a qualitative reconstruction, i.e., boundary
detection, and will require Young’s modulus reconstruction at
every point of the volume V or any chosen region of interest.
This is considered in the following section. Nevertheless,
such information derived from measured strain images can be
extremely important in those cases where the inclusion or other
tissue structures cannot be directly visualized by the imaging
system [28], [29].

In (8), (9) a linear stress-strain relation is assumed, but
no assumption is made about the strain-displacement relation.
Also, only the strain distribution in the immediate neighbor-
hood of the boundary is needed to reconstruct the Young's
modulus at this boundary. Consequently, this method can be
used without requiring small strain magnitude as long as the
stress-strain relation is still approximately linear, i.e., described
by (2). In most soft elastic materials such as tissue, the strain
reaches a limiting value e4, where the strain-displacement
relation (4) is no longer valid, before the stress-strain relation
goes nonlinear. Only upon reaching a second, higher limiting
strain value, ¢4, do both simple strain-displacement (4) and
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linear stress-strain (2) relations breakdown [33], [35], [38],
[39]. Therefore, methods based on stress continuity (8), (9)
are valid up to relatively high strain magnitude (for example,
up to 20% [38]). Note that limiting strain values vary for
different tissues. The use of high strains is extremely important
in clinical applications where large displacements can enhance
the signal to noise ratio of quantitative strain images [28].
Equation (9) shows that for an arbitrary deformed state,
reconstructing boundary values of the Young’s modulus for
clearly bounded inhomogeneities requires measurement of all
strain components in the neighborhood of the boundary G. For
a general, three-dimensional inclusion, this means complete
three-dimensional strain data. To reconstruct the Young’'s
modulus in a single plane, all displacement components must
only be measured in three close parallel planes intersecting
the volume V. From measurements in these three planes,
coefficients needed for reconstruction in the central plane
based on (9) can be calculated numerically with second
order accuracy. General three-dimensional reconstruction of
the inclusion boundary can be done by moving the imaging
planes in parallel. Note that only a pair of close parallel planes
can also be used for numerical reconstruction in a single plane,
but will, however, exhibit greater error since less accurate
finite differences will be used to approximate all derivatives.

B. Distributed Inhomogeneities

Not all inhomogeneities will exhibit a clear boundary and,
therefore, reconstruction of an isotropic medium with spatially
continuous changes in the Young’s modulus is required. An
example of such a distribution is given in Fig. 1(b). For this
type of reconstruction the function k(X) in (6) is assumed to
be continuous with well defined spatial derivatives.

Using the equations defining a linear, incompressible elastic
medium, the equilibrium condition (1) can be rewritten in the
form [26]:

2e12(k11 —ky22 ) + 2(ug,2 —u1,1 k12
+ 2e23k,13 —2€13k,23 +(Auz + wi2,1 )k
— (Au; — w122 )k2 +wi2,3 k3 +Awiok + F12 =0
2e13(k,11 —k,33) + 2e23K,10
+ 2(u3,3 —u1,1 )k,13 —2e12k,23
+ (Au3 + W13,1 )k71 +wl3>2 ka?
bt (Aul — Ww13,3 )k,s +Aw13k + F13 = 0
2e93(k,22 —k,33 ) + 2€13k,12 —2¢€12K,13
+ 2(ug,3 —u2,2 )k,23 +was,1 )k,1 +(Auz + was,2 )ky2
— (Aug — wa3,3 )k,3 +Awazk + Fo3 =0 10)
where the pressure p is eliminated from this system of equa-
tions, and the following notations are used:
W12 =U2,1 —U1,2,W13 = U3,1 —UL,3,W23 = U3,2 —U2,3,
A =8%/(023) + 8%/(9a3) + 8%/ (03),
Fig =(3/Eo)(f21 ~ f1,2), F1a = (3/Eo)(f31 — f1:3),
Fa3 =(3/Eo)(f3.2 —fa:3)-

Analytical solution of (10) is not generally possible for an
arbitrary spatial distribution of the elastic modulus k(X). Note

also that this set of equations represents a boundary value
problem and has an infinite number of solutions unless some
boundary conditions for k(X) are specified.

Complete numerical solution of these equations is possible
if all components of the displacement vector and strain tensor
are measured. It also requires that the boundary conditions for
k(X) be specified in the volume V. However, as considered in
Appendix II, for some cases of Young’s modulus distribution,
numerical solution of (10) can be obtained in a single plane
by discretizing all functions and computing spatial derivatives
with finite differences to yield a set of simultaneous linear
equations. That is, the complete displacement vector U must
be accurately measured in at least three close parallel planes
intersecting the volume V. Given complete displacement data
in these planes and boundary conditions for k(X) only in the
central plane, all coefficients of the differential equations can
be calculated numerically with second order accuracy and the
elasticity distribution can be reconstructed in the central plane.

C. Hybrid Reconstruction

In practice, neither clearly bounded inclusions nor smoothly
distributed inhomogeneities are complete models of elastic
modulus variations. To handle more general cases, a hybrid
procedure is used.

First, strain images are processed based on (9) to highlight
boundaries between regions of different elastic modulus. If
clearly bounded inclusions are present, then the Young’s
modulus can be obtained directly from (9) at points along the
boundary. More importantly, this procedure can define regions
of very small modulus variations (i.., where I is close to one).

Following boundary detection, closed contours of small
elasticity variations are defined. The total dimension of the
contour must include several resolution cells of the final
reconstruction. The modulus along these contours can be
considered constant thereby providing a boundary condition
for complete reconstruction of the elasticity within this region
of interest (ROI) based on numerical solution of (10). The
elasticity reconstructed in this way is the modulus relative
to the modulus along the boundary. If the elastic modulus
along this boundary is known (for example, if a specific tissue
type such as fat constitutes the boundary region), then the
reconstructed modulus is absolute. If the modulus along the
boundary is not known, then the reconstruction remains rela-
tive. Even if the reconstruction is relative, potential artifacts
in pure strain images due to the details of global boundary
conditions (i.e., geometry of the object, types of external load,
etc.) are removed.

Solution of (10) requires that both first and second order
spatial derivatives of k(X) be finite. If the ROI defined using
(9) contains a bounded inclusion, then this may not be satisfied.
To avoid this, a continuous elasticity distribution is forced by
low pass filtering both displacement and strain data within the
ROI prior to numerically solving (10). This filter effectively
smoothes the reconstruction so that k(X) is forced to be
continuous with finite first and second order spatial derivatives.
A negative consequence is that the reconstructed modulus
is underestimated both along the boundary of large, clearly
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bounded inclusions and within inclusions of spatial extent
comparable to the dimensions of the filter. If necessary, the
modulus can be estimated at these points from solution of (9),
i.e., from the boundary detection process. This hybrid proce-
dure allows local reconstruction of the elastic modulus within
the body without knowledge of global boundary conditions.

D. Plane Strain State

If all components of the displacement vector and strain
tensor are available, then the Young’s modulus can be recon-
structed with the hybrid procedure outlined above. However,
current strain imaging systems based on ultrasonic speckle
tracking are two-dimensional [17], [28], [29], and conse-
quently, boundary detection and Young’s modulus recon-
struction within selected ROI’s must be estimated based on
displacement and strain data from a single imaging plane.
To reconstruct the elastic modulus using current ultrasonic
equipment either some symmetries must be assumed in the
distribution of the Young’s modulus, or the deformation pat-
tern must be carefully controlled. Some simplifications to the
general equations based on spatial symmetries in k(X) per-
mitting reasonable reconstruction from only two-dimensional
displacement and strain measurements are considered in Ap-
pendix II. Below, we consider a specific type of deformation
requiring displacement and strain data only in the (z1, 2, 0)
plane (i.e., z3 = 0) to reconstruct the elastic modulus in that
plane.

In some practically important cases the out of plane dis-
placement u3 is either zero or small compared to the others
and the two in-plane components u; and uz do not vary
significantly as a function of the out-of-plane coordinate. This
is possible, for example, if one dimension of the region far
exceeds the others and the character of the inhomogeneity as
well as the manner of loading does not change or changes
only slightly along this direction. An example of such a
deformation is given in Fig. 2. Here a uniform surface dis-
placement is applied along the long z3 axis of a cylindrical
medium. Fig. 2(a) shows a three-dimensional view of this
deformation geometry and Fig. 2(b) and (c) illustrate two
orthogonal cross sections. Two different cases are presented:
a cylindrical inhomogeneity extending the entire length of the
object and a spherical inhomogeneity placed at the center. For
the cylindrical inhomogeneity, this deformation will accurately
approximate a plane strain state for imaging at the central plane
z3 = 0 [28], [29]. For the spherical inclusion, it produces
a weak approximation to a plane strain state. As will be
demonstrated below, if a uniform surface displacement is
applied then a plane strain state is a good approximation even
if the inhomogeneity is not extremely long.

For a plane strain state, in-plane components u; and ug of
the displacement vector U are functions only of 7 and x, and
uz = 0. Also, at the inclusion boundary only two components
of the normal vector are nonzero, i.e., n = (n1, n2, 0). For
these conditions, the second equation of (9) is automatically
satisfied and the first one leads to the following.

nina (it — eht) + [(n2)* — (m1)?]eis’

I'= .
n1na(e§3t — 55t) + [(n2)? — (n1)?ess*

amn

In this case, (11) should be satisfied along the entire boundary
of a clearly bounded inclusion contained in the plane.

Some additional simplifications based on the condition of
incompressibility (5) are possible. For a plane strain state,
the condition of incompressibility reduces to £11 + €22 = 0,
and consequently, at any point along the boundary where two
components of the normal vector are equal in magnitude, i.e.,
(n1)? = (n2)?, (11) reduces to

ext int
E €y

= Tint — gext’
Eln 622

r

12)

The parameter I' is defined above as the ratio of Young’s
moduli of internal and external media at the boundary of the
inclusion. That is, at any point where two components of the
unit normal to the border of a clearly bounded inclusion are
equal in magnitude, the Young’s modulus can be accurately
computed from a single component of the strain tensor. This
is a key result since only a single component is accurately
measured with current strain imaging systems [17], [28].

Accurate reconstruction of the Young’s modulus based on
(12) is only possible at special points. However, (12) can be
generally used to detect inclusions since there will be large
changes in T’ near the boundary over a wide range of n;
and n». Following boundary detection, all points satisfying
(n1)? = (ng)? can be identified. At these points the Young’s
modulus obtained from (12) represents an accurate estimate at
the boundary. For all other points, the shear strain component
€12 should be taken into account. Nevertheless, the simple
expression presented in (12) can be used to detect inclusion
boundaries even if the inclusion exhibits significant but smooth
spatial changes in the Young’s modulus.

Following boundary detection and definition of a closed
curve of constant elastic modulus, (10) must be solved nu-
merically within all ROD’s. For a plane strain state, where
the displacement vector components are ui = w1 (Z1, T2),
ug = uz(x1, T2), uz = 0, the set of (10) reduces to a single
nontrivial equation:

(ko1 — ko2 ) (ut,2 +ug,1 ) + 2k,12 (uz,2 —u1,1 )
+ 2k, (ugy11 2,22 ) — 2k,2 (w11 +ui,22)

+ k(ug,111 +u2,221 —U1,112 —u1,222)

+Fi2=0
Fi3 =0
Fy3 =0. (13)

Note that only two-dimensional in-plane displacement and
strain measurements are needed to reconstruct the modulus in
the plane z3 = 0.

In actual ultrasonic strain imaging systems, one component
of the displacement is measured with much higher accuracy
than the other. This can create reconstruction error based
on (13). Fortunately, this problem can be largely overcome
because the incompressibility condition for a plane strain state
is simply u1 1 +u2,2 = 0, where ug 2 is the longitudinal strain
component accurately measured within the image plane. Based
on this, accurate measurements of the lateral u; component of
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Fig. 2. Schematic of a uniform deformation applied along the long 3 axis of a cylinder. (a) Three-dimensional view of this deformation geometry. Two
different cases are presented: a cylindrical inhomogeneity extending the entire length of the object, and a spherical inhomogeneity placed at the center, where
a plane strain state is well approximated at the central cross-section of the object. (b) and (c) Illustrate two orthogonal cross-sections through the same object.

the displacement vector are needed along only one longitudi-
nal curve to compute the in-plane distribution of the lateral
displacement from the incompressibility equation.

The specific approach used to solve the 2nd order partial
differential in (13) depends on the relative magnitudes of
the coefficients in [40]. It is generally hyperbolic, although
a degenerate (i.e., parabolic) case is possible. For an incom-
pressible material, the degenerate case for the plane strain
state corresponds to an in-plane translation with rotation of
the volume as a rigid body. This means that the distribution
of relative Young’s modulus %(X) cannot be reconstructed
without knowledge of the internal pressure distribution for
this special case, and, therefore, either the pressure must be
measured and included into reconstruction, or different strain
and displacement patterns must be created within the object
using different boundary conditions. Note that there are some
very specific cases where (13) will always be degenerate
regardless of boundary conditions and, therefore, will require

measurements of the internal pressure distribution. Generally,
however, the boundary defined from (12) produces a nonde-
generate boundary value problem with a unique solution. Note
also that (13) for the nondegenerate case represent a boundary
value problem and, therefore, boundary conditions for k(X)
must be specified to determine the unique solution.

III. METHODS

Experiments were performed on a number of gel-based
cylindrical phantoms; a detailed description of phantom fab-
rication is given in references [28], [29]. The results reported
here were obtained from a specific set of phantoms illustrated
in Fig. 3.

A. Homogeneous Phantom

A homogeneous cylinder 88 mm in diameter and 140
mm long was constructed from a 5.5% by weight gelatin
concentration. A small amount of polystyrene microspheres
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Illustration of phantoms and deformation used in experiments. (a) Cross sectional view of the phantom with a single hard or soft inclusion. (b) Cross

sectional view of the phantom with three hard inclusions of different size. In both cases the inclusions extend the entire length of the phantom. (c) Longitudinal
view of the phantom with a short, 10 mm long cylindrical hard inclusion at the center. Four different imaging planes through the phantoms are also shown.

was added to act as ultrasonic scattering centers. This scatterer
concentration remained the same for all phantom materials.

B. Phantom with a Single Hard Inclusion

First, a homogeneous phantom was constructed from a 5.5%
by weight gelatin concentration. Then, a circular, longitudinal
hole 30 mm in diameter was made in the center of the
phantom. This hole was backfilled with 12% gelatin concen-
tration producing a hard cylindrical inclusion extending the
entire length of the phantom. The Young’s modulus of the
inclusion was estimated to be about three times larger than
that of surrounding material. This estimate was based on an
approximately linear dependence of the Young’s modulus on
gel concentration in this range [36].

C. Phantom with a Single Soft Inclusion

This phantom was constructed similar to previous phantoms
with the only difference that 12% gelatin concentration was
used for the surrounding material and 5.5% gelatin for a soft
inclusion. Again, the 30 mm in diameter soft inclusion ex-
tended the entire length of the phantom, and the Young’s mod-
ulus of the inclusion was estimated to be about 2.5-3.0 times
smaller than that of surrounding material. The cross-sectional
view of the phantom with a single either soft or hard inclusion
is shown in Fig. 3(a), where dimensions are also given.

D. Phantom with Three Hard Inclusions

Three longitudinal holes of different diameter (6.5 mm,
9.5 mm and 13 mm) were made in an otherwise homo-
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geneous cylindrical gel constructed from 5.5% by weight
gelatin concentration. All three holes were backfilled with 12%
gelatin producing hard inclusions of different size, as shown
in Fig. 3(b). Once again, these inclusions extended the full
length of the phantom.

E. Phantom with a Single Short, Hard Inclusion

A homogeneous cylinder with the same overall dimensions
as the homogeneous phantom was constructed from 5.5% by
weight gelatin concentration. Then, a circular, longitudinal
hole 30 mm in diameter was made in the center of the
phantom. The hole was backfilled with the same 5.5% gelatin
concentration except for a small central part, backfilled with
12% by weight gelatin concentration, producing a hard, 10 mm
long, cylindrical inclusion in the center of an otherwise homo-
geneous phantom. The central cross-section of the phantom
with a single short inclusion closely corresponds to that shown
in Fig. 3(a). A longitudinal view is presented in Fig. 3(c).

Each phantom was placed in a water tank with cylindrical
axis perpendicular to the axis of a 3.5 MHz, 128 channel, 1-
D transducer array attached to the bottom of the tank. The
phantom was centered so that the image plane approximated
the central plane perpendicular to the longitudinal axis of
the cylindrical phantom. The tank was filled with water
to provide contact between the array and phantom. Simple
surface displacements were produced by a hydraulically driven
piston contacting the phantom at the top center over the
entire length of the cylinder, where movement of this piston
was controlled by measuring ultrasonic pulse arrival time
differences to the central array elements. This piston was a 14
mm wide, rigid, rectangular block extending the entire length
of the phantom. The bottom of the phantom contacted the
tank such that it did not move during piston displacement.
The deformation at the central vertical plane of the phantom
produced by this experimental system closely corresponds to
the deformation geometry shown in Fig. 2 and approximates
a plane strain state.

As discussed previously, traditional speckle tracking breaks
down for large (compared to an acoustic wavelength) displace-
ments because of both out-of plane motion and decorrelation
effects due to finite strain [28]. To overcome these limitations,
a large set of images were recorded with small relative
displacements but significant total displacement from the be-
ginning to end of the set. The results presented below used a
large set of images spanning the total vertical piston displace-
ment with 200-300 um steps to quantitatively estimate the
vertical displacement and the vertical longitudinal strain. These
images were computed by properly accumulating differential
displacement and strain estimates between two neighboring
images of this large set spanning the total deformational range
[28].

As reported previously [29], in the area of the central
vertical plane of the phantom (z3 = 0), the deformation pattern
produced by the current system will closely approximate a
plane strain state. For this state, components u; and uy of
the displacement vector U are functions only of z; and
z2, and uz = 0. With these conditions, (12) may be used

for boundary detection of the inclusions, and (13) should
completely describe deformations in the imaging plane.

After recording the set of ultrasound images and computing
displacement and strain images from these data, the hybrid
reconstruction of the Young’s modulus proceeds in two sub-
sequent steps. First, inclusion boundaries must be identified to
define a nontrivial boundary value problem. That is, the closed
curve of constant Young’s modulus in the imaging plane must
be defined. In all cases, the stress continuity condition was
analyzed everywhere throughout the imaging plane using (12)
to highlight inclusion boundaries. For every vertical line, i.e.
x1 is constant, and any position 2 on this line, e22(z2 — h)
and e35 (2 + h) were computed for a fixed step k. Using these
definitions, the relative Young’s modulus I' was computed at
every point according to (12), where I greater than 1.0 means
that Young’s modulus E(z2 + h) is greater than E(zs — h)
and I" less than 1.0 means that Young’s modulus E(z2 + h)
is less than E(zo — h).

Also, to minimize the effect of noise on these images, the
value of I" at each pixel is multiplied by the ratio of the average
strain magnitude (€22) in a large region about the pixel to
the average strain along the center vertical line of the image.
As discussed in [28], strain variance is relatively independent
of strain magnitude. Based on a simple propagation of error
analysis, the variance in I' estimated by (12) is

o2

ot =(T%41) <3> (14)
€22

where o2 is the variance in the strain image. Clearly, in
regions of small average strain 22, normalizing by the average
strain reduces large scale fluctuations in estimates of I'. This
normalization does not alter any results in high strain regions
and only serves to minimize the effects of noise in low strain
areas.

The second step is the actual reconstruction of the spa-
tial distribution of the Young’s modulus by solving (13)
for unknown £(X). To solve (13), both components of the
displacement vector must be accurately measured throughout
the entire image plane. However, only one component, in our
experimental setup the vertical component ug(x1, x2), of the
displacement vector is measured accurately using ultrasound
speckle tracking [28]. Fortunately, the lateral displacement
u1(z1, z2) can be estimated from the vertical displacement
u2(z1, z2) using the incompressibility condition 1,1 +ug2,2 =
0 and measurements of the lateral component of the displace-
ment vector along any vertical longitudinal line. The specific
program developed to solve (13) assumes that the lateral
displacement w;(z1, z2) is zero along the central vertical
axis of the image. This is a good approximation for all
phantoms studied based on the vertical central plane symmetry
of the experimental system. Only the phantom with three
asymmetrically located hard inclusions [Fig. 3(b)] slightly
violates this assumption. Nevertheless, for the top part of this
phantom containing the smallest inclusion, this assumption
will not be in a great error.

After defining the boundary of the region of interest (ROI)
and the closed contour of uniform Young’s modulus, (13) is
discretized with a 2 mm grid spacing over the ROI, where
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all spatial derivatives are approximated by finite differences.
Original displacement images are spatially low pass filtered to
match this grid spacing before computing finite differences and
to ensure that the model of a continuous elasticity modulus is
well approximated. Also, it was assumed that F'» vanishes for
our deformational system, where the phantom was immersed
in water during the experiment and, therefore, gravitational
and buoyancy forces cancel.

The linear set of equations resulting from the discretization
of (13) is solved by iteration, where the error on each step
is estimated by averaging the left-hand side of (13) over the
entire grid using the current estimate of the Young’s modulus
distribution. From step to step, the entire modulus distribution
over the full grid is updated based on changes in the average
error.

IV. RESULTS

The hybrid reconstruction procedure was first tested on
the homogeneous phantom and phantoms with a single long
inclusion. In Fig. 4, T' estimated using (12) for the homoge-
neous phantom [Fig. 4(a)] and the phantom with a single hard
inclusion at the center [Fig. 4(b)] are presented. A step size h
of approximately 0.4 mm was used for both images displayed
over a 100 mm by 100 mm area, where the transducer array
is at the bottom and the piston is located at the top. A
quantitative gray scale is used for these images so that a T’
of 1.25 is pure white, a I' of 0.75 is pure black and a T of
1.00 is mid-gray. Note that both images are displayed over
the same dynamic range. There are large artifacts for both
phantoms near the top and bottom of the image (i.e., near the
piston and the constraining bottom plate). In these regions,
high strain variations are formed by the boundary conditions
resulting in erroneous estimates of I'. Excluding these areas,
there are striking differences between the I' images of these
two different phantoms. Near the top of the hard inclusion in
Fig. 4(b) the value of T" is significantly less than 1.0, indicating
a transition from a soft to hard region. Correspondingly, near
the bottom of the inclusion I is significantly larger than 1.0,

(b)

Fig. 4. Normalized elastic modulus (T') estimated in (a) homogeneous phantom and (b) phantom with a single hard inclusion.

indicating a transition from hard to soft region. These are
precisely the results expected for a single hard inclusion.

The boundaries of the single hard inclusion can be clearly
seen in Fig. 4(b), but are even more visible if a different
display format, such as that of Fig. 5, is used. In Fig. 5 the
parameter II, defined as

n=r-1
Mm=1/T-1

forT' > 1
forT' <1

is presented for the homogeneous phantom [Fig. 5(2) and (c)],
phantom with single hard inclusion [Fig. 5(b)] and phantom
with a single soft inclusion [Fig. 5(d)]. The first two [Fig. 5(a)
and (b)] are the TI images for the images in Fig. 4 computed
for a step size h of about 0.4 mm. These images are subjected
to a threshold of 0.06 (i.e., I < 0.06 is black and IT > 0.06 is
white). Again, there are major differences between these two
images and, clearly, the vertical boundaries of the inclusion in
Fig. 5(b) are delineated. Differing from the previous two, the
other two images of Fig. 5 [Fig. 5(c) and (d)] compare II in
the homogeneous phantom and the phantom with a single soft
inclusion where a step size h of about 4 mm and threshold
of 0.6 were used. Both top and bottom borders of the soft
inclusion are highlighted in Fig. 5(d), but without the fidelity
of Fig. 5(b). The homogeneous phantom in Fig. 5(c) does not
exhibit any boundaries in the central area of the phantom for
either 0.4 mm or 4 mm step sizes. The parameter 11, rather than
T, is preferable for boundary detection since the same value
is obtained at either hard to soft or soft to hard transitions.
Note that each pair of images is displayed over exactly the
same dynamic range.

Following boundary detection, reconstruction of the
Young’s modulus for the same phantoms is shown in Fig. 6.
The reconstruction is based on numerical solution of (13),
where it was assumed that the Young’s modulus is uniform
along the borders of the 40 by 40 mm square positioned at
the center of the homogeneous phantom [Fig. 6(a)], phantom
with the single hard inclusion [Fig. 6(b)] and phantom with
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Fig. 5. Threshold differential elastic modulus (II) estimates presented for two pairs of phantoms: (a) and (b) homogeneous phantom and phantom with
a single hard inclusion, (c) and (d) homogeneous phantom and phantom with a single soft inclusion. Images in each pair are displayed over the same

display dynamic range.

the single soft inclusion [Fig. 6(c)]. This square was chosen
since it includes the boundaries detected in Figs. 4 and 5. The
images in Fig. 6 represent the 40 by 40 mm region, where a
logarithmic gray scale over the range 0.5 < E J/Eg < 2.1is
used. The gray scale was selected so that the relative Young’s
modulus of 1.0 is mid-gray, dark areas represent softer material
and bright areas harder material. The phantoms were subjected
to 4-5 mm uniform vertical surface deformation applied
along the entire length of the phantom. Both hard and soft
inclusions are clearly visible. Moreover, changes in contrast
for both inclusions are much greater than average error in the
reconstruction of the homogeneous phantom. This is shown
in Fig. 6(d), where reconstructed elasticity profiles along the
central horizontal line are compared for the homogeneous
phantom and phantoms with hard and soft inclusion. The
results presented in Fig. 6 demonstrate that the reconstruction
algorithm based on (13) reasonably matches the expected
magnitude of relative Young’s modulus in these phantoms.
As discussed previously [29], if a plane strain state is not
present, i.e., an inappropriate model is used, then reconstruc-

tion based on (13) will be in error. To experimentally test
the magnitude of these errors for a simple model system,
the phantom with a short hard inclusion in the center of
an otherwise homogeneous gel was used. This phantom was
identical to the one with a single hard inclusion except that
the inclusion was only about 10 mm long rather than the full
length on the phantom. Four different planes of the phantom
shown in Fig. 3(c) were imaged with a uniform 5 mm surface
deformation, where the first imaging plane is at the center of
the inclusion, the second plane is 3 mm displaced from the
center of the inclusion but still within the inclusion (i.e., 2
mm from the edge of the inclusion), the other plane is 6 mm
displaced from the center (i.e., 1 mm outside the inclusion)
and, finally, the last imaging plane is 10 mm from the center
of the inclusion (i.e., 5 mm outside the inclusion). The results
of boundary detection and elasticity reconstruction in this
phantom are presented in Fig. 7.

The first two [Fig. 7(a) and (b)] are boundary detection
images, where the parameter I was computed for a step size of
0.4 mm and displayed with a threshold of 0.06 (i.e., 1 <0.06
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Fig. 6. Reconstructed images of the Young's modulus in the central plane of (a) homogeneous phantom, (b) phantom with a single hard inclusion, (c)
phantom with a single soft inclusion. (d) Profiles of the reconstructed Young’s modulus in the same phantoms along the central horizontal line are plotted
on a semi-logarithmic scale. Phantoms were subjected to 4-5 mm uniform surface displacement.

is black and II > 0.06 is white). Fig. 7(a) corresponds to
the first imaging plane taken at the center of the inclusion.
Inclusion boundaries are clearly visible on this image.

Similar results were obtained for the second imaging plane
displaced from the center but still within the inclusion.
Fig. 7(b) corresponds to the last imaging plane 5 mm outside
of the inclusion. Inclusion boundaries were not detected
either in this or in the previous imaging plane outside of
the inclusion.

Based on these images, the closed curve of constant Young’s
modulus is defined along the border of a 40 by 40 mm
rectangle positioned at the center of this phantom, and elas-
ticity reconstruction of the square area is performed at all
four planes. The results are shown in Figs. 7(c)—~(f) over
exactly the same display dynamic range used in Fig. 6. In
Fig. 7(c), the Young’s modulus reconstruction in the central
plane highlights the presence of the hard inclusion detected in
Fig. 7(a). This is an expected result since a plane strain state
is well approximated at this plane, and the image reasonably
approximates that of the phantom with long hard inclusion.
In the second closest plane [Fig. 7(d)] the inclusion is also
detected by the reconstruction algorithm, although artifacts
are slightly larger than on the previous image. Nevertheless,
as soon as the imaging plane is outside of the inclusion,

the inclusion is not present on reconstructed images of the
Young’s modulus distribution [Figs. 7(e) and (f)]. Therefore,
within 1-2 mm of the edge, images within and outside the
inclusion [Figs. 7(d) and (e)] are recognizable although artifact
levels are certainly higher. At only 5 mm beyond the edge
of the inclusion, the reconstruction looks very much like the
homogeneous phantom. Also, the level of artifacts is reduced
for the last imaging plane [Fig. 7(f)] compared to the previous
image [Fig. 7(e)] since the inclusion has less influence on
displacement/strain fields. Note that the resolution in z3 (i.e.,
slice thickness) of the strain imaging system is about 1.5-2 mm
at the center of the inclusion. These results demonstrate that
if uniform surface loading is used for phantom deformation,
then reconstruction based on a model of a plane strain state
[i.e., (13)] leads to reasonable results even if inhomogeneities
are not infinite.

Finally, images of I and II for the phantom with three
hard inclusions of different sizes are presented in Fig. 8(a)
and (b), respectively. In these images precisely the same
parameters and display formats as in Fig. 4 and Fig. 5(a) and
(b), respectively, were used. These images were computed
for a step size h 0.4 mm to highlight the fidelity of
inclusion boundaries. All three inclusions are detected, where
the distance between vertical boundaries closely approximates
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Fig. 7. Results of the hybrid Young’s modulus reconstruction for the phantom with a short hard inclusion extending only 10 mm in length, i.e., less than 10%
of the phantom length: (a) and (b) threshold differential elastic modulus (IT) estimates for the imaging planes inside and outside of the inclusion, respectively,
c—f) reconstructed Young’s modulus distribution at four different planes within this phantom, as shown in Fig. 3C.

the actual physical dimensions of each inclusion. The recon-
struction of the Young’s modulus distribution of the smallest
inclusion is presented in Fig. 8(c) for a 20 mm by 20 mm
square with inclusion approximately in the center. The same
logarithmic gray scale as in Fig. 6 (0.5< E/E; <2.1) is used.
Again, the size of the detected inclusion closely corresponds
to the actual size. However, even though the inclusion is
noticeable in this image, the level of artifacts is comparable

with the magnitude of the inclusion’s Young’s modulus. Note
that the spatial resolution of strain and displacement images is
about half the diameter of this smallest inclusion.

V. DISCUSSION

Reconstructive elasticity imaging is possible if internal
displacement and strain fields are accurately measured with
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Fig. 8.

Results of the hybrid Young’s modulus reconstruction for the phantom with three hard inclusions of different size: (a) normalized elastic modulus

(T') estimate for a central cross sectional plane of the phantom, (b) threshold differential elastic modulus (II) estimate, (c) reconstructed Young’s modulus
distribution for a 20 by 20 mm square positioned at the top of the phantom. This area includes a 6.5 mm diameter inhomogeneity located approximately

in the center of the image.

subsequent reconstruction of the elastic (Young’s) modulus.
In this report, we have shown that longitudinal displacement
and strain images in the limit of large (compared to an
acoustic wavelength) surface deformation can be used to detect
inclusion boundaries and reconstruct the Young’s modulus
distribution.

Boundaries of local inhomogeneities can be detected even
in cases where the simple assumptions leading to (12) are
not strictly valid. If a plane strain state can be approximated,
then accurate estimates of I' will be obtained from images
of a single strain component at boundary points where the
components of the normal vector are equal in magnitude, i.e.,
(n1)? = (n2)?. Even at boundary points not satisfying this
condition, either I" or II will still differ from unity although
the exact value will be incorrect if the magnitude of the
longitudinal strain is significant. At positions where either
the magnitude of the shear strain is greater than that of the
longitudinal strain or the longitudinal strain signal-to-noise
(SNR) is poor, (12) cannot be used for boundary detection.
Nevertheless, as demonstrated by measurements on simple gel-
based phantoms, bounded inclusions can be readily detected
with (12) if the longitudinal strain SNR is large.

The parameters I or II are computed with a fixed step.
For the results presented in Figs. 5(a) and (b), a step of 0.4
mm was used. This size is considerably less than the 3 mm
spatial resolution of the original strain images [28], [29]. Such
a small step size was used to minimize the apparent extent of
inclusion boundaries. An unfortunate consequence is that both
I and II are severely underestimated. To gain more accurate
measures of the relative Young’s modulus at the boundary, a
step size comparable to the spatial resolution must be chosen.
In Fig. 5(d) the II image for the phantom with a single soft
inclusion is illustrated for a step size of 4 mm and a threshold
such that I < 0.6 is black and IT > 0.6 is white. Both top and
bottom borders of the inclusion are highlighted, but without
the fidelity of Fig. 5(b). Nevertheless, peak values of II in
the region where (n1)? = (n3)? are about 1.3, close to the
value of TI = 1.5 (i.e.,, I' = 2.5) expected for this inclusion.
A comparison between Fig. 5(b) and (d) demonstrates the
need to compute IT at several different step sizes. Small steps
can delineate the boundaries of local abnormalities whereas
large steps can quantify the Young’s modulus along regions
of the boundary where (n;)? = (n2)2. If the inclusion itself
is homogeneous, then elasticity reconstruction is complete
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since T or II is estimated in boundary areas where (m)? =~
(TLQ)Z.

The Young’s modulus at the inclusion boundary was cal-
culated from a single accurately measured component of the
strain tensor, where this estimate is only valid at points where
(n1)? = (n2)?. However, to fully characterize deformations
of an elastic body, the complete displacement vector and
strain tensor must be computed. For a plane strain state,
only lateral and longitudinal components of the displacement
vector must be measured since the other component vanishes.
Consequently, only one longitudinal and one shear component
of the strain tensor need be measured to represent the strain
tensor for an incompressible material under a plane strain state.
Parameters I' or I can be more accurately computed at all
boundary points if every component of the strain (i.e., longitu-
dinal and shear) is measured and the more general (11) is used.

If the inclusion is not homogeneous, boundary detection
can aid more complete reconstruction. Once the boundary is
determined and the modulus on that boundary estimated, more
traditional numerical algorithms can be used to reconstruct
the elasticity distribution within the inclusion. However, the
specific approach used to solve second order partial differential
equations of the type given in (13) depends on the relative
magnitudes of the coefficients in the equation [40]. This
equation generally is hyperbolic, although a degenerate (ie.,
parabolic) case is possible. For an incompressible material,
the degenerate case for the plane strain state corresponds
to an in-plane translation with rotation of the volume as
a rigid body. This means that the distribution of relative
Young’s modulus k(X) cannot be reconstructed in this case
without knowledge of the pressure distribution. Nevertheless,
if the pressure distribution can be measured, then elasticity
reconstruction can be performed directly.

Numerical solution of (13) for a nondegenerate case requires
only knowledge of the elastic modulus along some boundary,
but not necessarily the boundary of the object. Using inclusion
boundaries determined by (12), the Young’s modulus must
be specified for any closed curve outside this inclusion. In
general, however, Goursat conditions are preferable, where the
Young’s modulus need be specified only along two intersecting
characteristic curves [40]. These characteristic curves reduce
simply to two intersecting edges of a square region of interest
if the ratio of shear strain to longitudinal is small over the ROL
Consequently, if the external deformation can be controlled to
minimize the ratio of shear to longitudinal strain components
in a square ROIL, then the boundary conditions are greatly
simplified. Future studies will explore Goursat conditions for
geometries more closely approximating clinical imaging.

The quality of Young’s modulus reconstruction is ultimately
limited by the spatial resolution and accuracy of measured
displacements and strains. Previously, a method of tracking
relatively large displacements was presented showing signifi-
cant signal-to-noise (SNR) improvement in both displacement
and strain estimates [28]. These SNR improvements should
enhance contrast resolution in elasticity reconstruction. That
is, even if linear elasticity does not strictly hold for large
scale deformations, Young’s modulus reconstruction based on
(12) and (13) may still be more accurate. To test this, the

entire set of experiments on the homogeneous phantom and
phantoms with a single hard or soft inclusion was repeated
with a uniform surface displacement of 13.2 mm, representing
nearly a factor of 3 increase in the external deformation.
Reconstructions based on these measurements are presented in
Fig. 9 over the same display dynamic range used for Fig. 6.
Again, Fig. 9(a) is the homogeneous phantom, Fig. 9(b) is
the phantom with a single hard inclusion and Fig. 9(c) is
the phantom with a single soft inclusion. A comparison
of the results in Figs. 6 and 9 clearly demonstrates that
contrast resolution in elasticity reconstructions is improved if
larger external deformations are used. For more quantitative
comparison, the profiles of the Young’s modulus distribution
along the central horizontal line of Figs. 6(a) and 9(a) (i.e.,
homogeneous phantom) are presented in Fig. 9(d). Significant
reduction in Young’s modulus variations due to enhanced SNR
is noticeable in this graph. Therefore, SNR improvement in
strain and displacement measurements directly translates into
enhanced contrast resolution in elasticity reconstructions. To
optimize both spatial and contrast resolution of elasticity im-
ages, deformational imaging methods permitting larger internal
strains must be used for all applications.

In the present study, only one longitudinal component of the
displacement vector was accurately measured in the imaging
plane. However, the lateral uy displacement can be estimated
directly from the measured longitudinal uy displacement using
the principle of incompressibility, i.e., 1,1 +u2,2 = 0. With
this condition, the lateral component was estimated assuming
that it was zero along the central vertical line of the phantom.
This is a good approximation for the experimental system
and almost all phantoms used in the present study. In more
general cases, however, this approximation may not hold and,
therefore, accurate measurements of the lateral component of
the displacement vector at most along any single vertical
line are needed. In general, access to the lateral component
of the displacement vector will significantly improve both
reconstruction and boundary detection algorithms.

Even if strain images are intimately linked to the Young’s
modulus distribution, artifacts are present in these images
due to the details of global boundary conditions, such as the
geometry of the object, shape changes during deformation,
specific types of external loads, etc. Reconstructive elastic-
ity imaging has the potential to remove these artifacts and,
therefore, produce images relatively independent of global
boundary conditions. This is reasonable since no knowledge
of the global boundary conditions is required to perform
elasticity reconstruction in a selected ROI since linear elas-
ticity specifies that true mechanical properties of a medium
are not load/geometry dependent. At the same time, it has
been demonstrated that the SNR in strain and displacement
measurements has clear impact on elasticity images. Also,
manipulations with global boundary conditions will permit
proper control of the deformed state and, therefore, optimal
balance between longitudinal and shear strain in the ROL. That
is, careful control and optimization of the boundary conditions
are necessary for accurate Young’s modulus reconstruction
even though reconstructions are theoretically independent of
global boundary conditions.
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Fig. 9. Reconstructed images of the Young’s modulus in the central plane of (a) homogeneous phantom, (b) phantom with a single hard inclusion, ()
phantom with a single soft inclusion. Phantoms were subjected to 13.2 mm uniform surface displacement, representing nearly a factor of 3 increase over the
deformation used to produce Fig. 6. (d) Comparison of the reconstructed Young’s modulus magnitude profiles in the homogeneous phantoms subjected to 4
and 13.2 mm surface displacements. These profiles along the central horizontal line of the corresponding image are plotted on a semi-logarithmic scale.

Finally, the results presented here suggest that quantitative
reconstruction of the elastic modulus may be possible for
complex objects such as the human body. Full reconstruction
of the elastic properties of soft tissue without any assumptions
should be based on reasonably good measurements of the
complete 3-D spatial distribution of all necessary components
of the displacement and strain. In the meantime, if limited
measurements are available, then both a correct model of
inhomogeneities and proper control of external deformation
must be used for accurate reconstruction.

APPENDIX A
COMPRESSIBLE MEDIUM

In a compressible medium, the Poisson’s ratio v does not
equal 0.5 and, therefore, the components of the stress tensor
in an isotropic, continuous, compressible medium under static
deformation are:

Oij = /\(")(51] + 2[1,5,']’ (A-1)
where © = divU = e17 + €99 + €33 is the trace of the strain
tensor, the parameters A and u are Lame coefficients, and €,
is one component of the strain tensor defined in (4). Note the
differences between the stress-strain relations in (2) and (A-

1). Assuming that the Poisson’s ratio depends only slightly on
position, and defining the following parameters

1
M= oA +v)

v

I=0rna-2)

(A-2)

the Lame coefficients can be written in the form

where Ej is constant and k(X) is arbitrary and not generally
a continuous function of position.

First we will consider a bounded inclusion with boundary
G. Assigning indexes ‘‘int’’ and ‘‘ext’ to internal and exter-
nal variables, respectively, at boundary points, and substituting
T for the ratio of Young’s moduli E¢®t/E™t, the stress
continuity condition (7) becomes [26]:

100, + 2m(e$Tn1 + 53'ns + €5%tn3)]
= 10", + 2m(citny + ei3ing + eintng)

10y + 2m(ef3iny + €52y + €55 n3))
= 10"y + 2m(eitng + ety + ehiing)

T[10%*ns + 2m(e$Ein, + €55 ns + €55 n3)]

= 10" + 2m(eiitng + eintng +efsing).  (A-3)
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Note the similarity of (A-3) with (8) for an incompressible
material. Again, if all components of the strain tensor are
known, then any equation in (A-3) can be used to determine T'
at the inclusion boundary, and the other two equations in (A-3)
can be used to estimate the accuracy of strain measurements
in the neighborhood of the boundary point. However, if the
value of Poisson’s ratio is unknown, i.e., parameters [ and
m cannot be computed and must be eliminated from the
system of equations (A-3), the resulting equations will be
the same as in (9). This is an expected result since in both
compressible and incompressible media the same A@ product
must be eliminated. Nevertheless, if the elastic properties do
not exhibit large fluctuations inside the inclusion, elasticity
reconstruction is complete since the value of k(X) is found
at the inclusion boundary.

If the function k(X) is continuous with well defined spatial
derivatives, then complete reconstruction of the elasticity
within the region of interest must be performed. For this case,
the equilibrium condition (1) can be rewritten in the form [26]

Eok(1©,; +2meq1,1 +2me1a,2 +2mey3,3)

+ Eo(10k,1 +2meq1k,1 +2merak,y +2mesk,s ) + fi =0
Eok(10,3 +2me12,1 +2megg,0 +2meas,s)
+ Eo(I0k,2 +2me19k,1 +2meask,s +2meqgsk,s ) + fo = 0)
Eok(l@,g +2m613,1 +2mesgz,o +2meas,3 )

+ Eo(I10k,3 +2me13k,1 +2megzk,s +2meask,s )

+ f3=0. (A-4)
Here the lower index after a comma means differentiation with
respect to the corresponding spatial coordinate.

It is important to note that each equation in (A-4) is
only a first order partial differential equation with respect to
k(X) and, therefore, generally more preferable. However, the
specific equations presented here for a compressible medium
are very difficult to solve if in fact the medium is nearly
incompressible. In this case, © = div U is small, but the
parameter [ is large (since Poisson’s ratio v is very close to 0.5
for a slightly compressible medium). Consequently, the effect
of very small errors in estimating © from deformation mea-
surements can be greatly magnified by multiplication with .

Similar to an incompressible material, parameter {Gcan be
eliminated from (A-4), and the system of equations (10) will
be obtained with the following changes in notation:

F12 = (f?vl _f172 )/mEO)
Fi3 =(f3,1 —f1,3)/mEo,
Fy3 =(f3,2—f2,3)/mEjs.

Each equation in (10), however, is a second order partial differ-
ential equation with respect to k£(X), and requires knowledge
of higher strain and displacement derivatives than in (A-4).
Since these components are measured with finite signal-to-
noise ratio, error due to higher derivatives may increase.

If all components of the displacement and strain are avail-
able, hybrid reconstruction of the Young’s modulus proceeds
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as outlined before. First, strain and displacement images are
processed to highlight boundaries between regions of different
elastic modulus. This is based on either (A-3) or (9). If the
inclusion is clearly bounded, then elasticity reconstruction is
complete. Spatial variations of the elasticity inside the region
of interest (ROI) are computed following boundary detection.
After low pass filtering both displacement and strain data
within the ROI to ensure a continuous elasticity distribution,
the reconstruction is performed by numerically solving either
(A-4) or (10). This will conclude elasticity reconstruction
within that ROL

Again, a specific type of applied deformation can be consid-
ered requiring displacement and strain data only in the imaging
(z1, 72, 0) plane. For a plane strain state, the last equation in
(A-3) is satisfied since n3z = 0 for this case, and the first two
equations in (A-3) reduce to

I [0 tn; + 2m(eftng + €3tny)
lec=tny + 2m(ef¥ing + £55tn,)

_ 19™tny + 2m(eittng + e53tn,)

T 1OeTtny + 2m(e$5tng + e55ing)

r

(A-5)

Also, if the parameter /©® must be eliminated from (A-5), then
(11) will be obtained. Both (A-5) and (11) should be satisfied
along the boundary of a clearly bounded inclusion. Note that
these equations can also be used for boundary detection.

For a plane strain state, (A-4) reduces to two nontrivial
equations:

Eok(10,1 +2meq1,1 +2mer2,2)

+ Eo(l@k,l +2meq1k,y +2merok,o ) +fi=0
Eok(1©,5 +2me1a,1 +2mega,n)

+ Eo(IOk,2 +2me1ok,1 +2meagk,s ) + fo = 0)

fz=0. (A-6)
For the case of a slightly compressible media, (10), with
notations for compressible media, reduces to one nontrivial
equation similar to (13). Again, two-dimensional in-plane
displacement/strain measurements are needed to reconstruct
the Young’s modulus in the plane z3 = 0 if either (A-6) or
(13) is used.

In conclusion, incompressible and slightly compressible
media must be treated in a similar way, since strain and
displacement components are measured with finite accuracy
and, consequently, small error in these measurements may
have large impact on the elasticity reconstruction. However,
if the media is compressible, then equations with lower order
derivatives can be used.

APPENDIX B
SIMPLIFICATIONS FROM SPATIAL SYMMETRIES

Along with simplifications of a general model for elasticity
reconstruction due to careful control of the deformed state,
other simplifications from spatial symmetries are possible.
Below, we present several types of 3-D inclusions possessing
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simple symmetries where the problem reduces to a condition
similar to (11) in the particular plane. For these symmetric
inclusions, however, many points satisfy the condition n3 = 0,
similar to a plane strain state. In all cases considered here, it
was assumed that strain and displacement data are measured
in the imaging plane (z1, z2, 0), i.e. z3 = 0.

If the inclusion has a plane of symmetry, i.e., there is a plane
(z1, T2, 0) crossing the inclusion such that along the boundary
the condition ng = 0 is fulfilled, then at every point on that
boundary, with no assumption about the deformed state of the
volume V, the first equation of (9) leads to (11), repeated here
for convenience:

ning(efi’ — e5') + [(n2)* — (n1)*Jely’

I'= .
ning (5t — e557) + [(n2)? — (n1)?lefs’

In this equation, n; and ny are two orthogonal components of
the normal vector n = (n1, ng, 0) to the inclusion boundary
in plane (z1, z2), and all terms in this equation can be directly
obtained from 2-D measurements in the imaging plane. If
the inclusion changes shape slightly along the z3 direction
making the ng component nonzero but small in some regions
of the imaging plane, then terms in the first equation of (9)
containing ng are also small such that (11) still accurately
models the stress continuity requirements for these regions.
This is, for example, why boundary detection based on (12)
for the phantom with a short hard inclusion highlights the
borders of such an inclusion even if the plane strain state
approximation is weak. The ultimate accuracy depends on the
relative magnitude of the out-of-plane shear strain £33 and €23
with respect to in-plane €11, €22, and €;2 strain components.

For an inclusion with planar symmetry, the spatial dis-
tribution of Young’s modulus should satisfy the condition
k(z1, z2, z3) = k(z1, 2, —x3)]. Then, the first equation of
(10) for the plane (z1, x2, 0) takes the form:

2e12(k,11 —k,22) + 2(uz2,2 —ui,1 )k,12
+ (Asug + ug,33 +wiz,y )k,1 —(Asuy + 11,33
—w12,2 k2

+ Agwizk + wi2,33k + F12 =0 (B-1)

where

W12 =U2,1 —U1,2,
Ag =9°/(0a7) + 0% /(923),
F12 = (3/E0)(f271 _f112 )'

The out-of-plane displacement component u3 has been
eliminated in this equation, and other components of the
displacement/strain can be computed from 2-D measurements
in the imaging plane. However, terms 1,33 , ¥2,33 and wi2,33
cannot be computed from measurements in a single imaging
plane only, and create reconstruction error if ignored. Nev-
ertheless, if measurements are possible in three close parallel
imaging planes, then second order derivatives can be found for
a central imaging plane using a finite difference approximation
and, consequently, included in the reconstruction algorithm.

In general, however, the magnitude of these terms can be
minimized by carefully controlling the deformed state of the
medium. In particular, the plane strain state is one such
controlled deformation.

If the inclusion has axial symmetry, for example an z;-axis
symmetrical inhomogeneity, where relative Young’s modulus
k(X) and inclusion boundary G take the forms

k(l], T2, .'133) = k(.’l’l, 'V'),
G:g(z1, ) =0,
r? = (22)% 4 (3)%,

then the first equation of (9) for the imaging plane z3 = 0
will lead to

_ TX%2801 9 (et — e53") + [(w2gr )2 —(rgx )2]5??
7224951 9sr (E(ﬁt - Eggt) + [(ngW )2 - (Tg,1 )2]561:;%

Again, all terms in this equation can be directly computed
from measured strain components in the imaging plane. Note
that no assumption is made about the deformed state.

For actual reconstruction of the Young’s modulus k(X),
the first equation of (10) in the imaging plane z3 = 0 and,
therefore, » = =z, leads to an expression identical to (B-
1) permitting measurements in three close parallel planes to
access out-of-plane derivatives. Similar results can be obtained
for an inclusion with z;-axis of symmetry, i.e.,

k(zy, T2, x3) = k(z2, T),
G:g(za, 1) =0,
r? = (21)% + (3)%.
Finally, a spherically symmetric inhomogeneity is a partic-

ular case of the axially symmetric inclusion considered above
with spatial distribution of Young’s modulus

k(x1, T2, T3) = k(r), 2= (21)% 4 (22)% + (z3)*.

Here, for an arbitrary deformed state of volume V, the first
equation of (9) for the plane z3 = 0 reduces to a second order
linear ordinary differential equation rather than a second order
partial differential equation (B-1)

2 1
3 <k7rr - ko ) [(z? = z2)e12 + T122(Uns2 —u1,1))

1
+ - ky [z1(Asug + ug,33 +wiz,1)

— z9(Asu + u1,33 —wi2,2 )]

+ k(Aswiz +wiz,33) + Fi2 =0 (B-2)

which has a simple form for £, = r, 2 = O:

1
2e12 (kvrr - kw‘) + k,r (Agug + u2,33 +wi2,1)
+ k(Aswiz + wi2,33) + F12 = 0.

Again, all terms containing second order partial derivatives
with respect to z3 can either be obtained from measurements of
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corresponding displacement/strain components in three close
parallel planes, or ignored if the deformed state is controlled
so that these terms vanish.

In practice, however, neither a perfect plane strain state nor
symmetric inhomogeneities may exist. Full reconstruction of
the elastic properties of soft tissue without any assumptions
should be based on complete 3-D measurements of all nec-
essary displacement and strain components. If only limited
measurements are available, then both a correct model of
inhomogeneities and careful control of external deformations
must be used to achieve a reasonably accurate reconstruc-
tion.
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