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Abstract—Evaluation of internal displacement and strain dis-
tributions in tissue under externally applied forces is a necessary
step in elasticity imaging. To obtain a quantitative image of the
elastic modulus, strain and displacement fields must be measured
with reasonable accuracy and inverted based on an accurate
theoretical model of soft tissue mechanics. In this paper, results
of measured internal strain and displacement fields from gel-
based phantoms are compared with theoretical predictions of
a linear elastic model. In addition, some aspects of elasticity
reconstruction based on measured displacement and strain fields
are discussed.

I. INTRODUCTION

HANGES in soft tissue elasticity are usually related to

some abnormal, pathological process. The success of
palpation as a diagnostic tool is evidence of this. Even today,
palpation is widely used as a self-screening procedure for hard
masses in the breast and testes. Its efficacy, however, is limited
to abnormalities located relatively close to the skin surface.
Moreover, information obtained by palpation is inherently
subjective. Nevertheless, differences in elasticity (Young’s or
shear modulus) between tissues can be significant [1], whereas
bulk modulus variations in soft tissue, the primary contrast
mechanism in current ultrasound imaging, are only a few
percent [2]. Therefore, even if measurements of the elastic
modulus are made with reasonable error, there is hope that
imaging of tissue shear elasticity will become a new modality
of significant diagnostic value [3]-[20].

There has been consistent interest in tissue elasticity, where
several direct methods have been suggested to measure the
mechanical properties of tissue. More recently, elasticity imag-
ing has been proposed by a number of investigators, where
convenient imaging modalities have been used to evaluate tis-
sue motion induced by an external force/displacement source
[3]-[20]. Unfortunately, no imaging modalities, including ul-
trasound, nuclear magnetic resonance and computed tomogra-
phy, can directly provide information about tissue elasticity.
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Therefore, the elastic properties of tissue must be reconstructed
using information obtained from conventional imaging sys-
tems.

In general, any imaging system can provide information
about tissue motion [3]-[20]. One approach is to reconstruct
the elastic properties of tissue based on ultrasonic measure-
ment of tissue motion under externally applied forces. In
competition with other imaging modalities, ultrasound has two
major advantages for elasticity imaging: it is inherently real-
time and speckle artifacts limiting the quality of conventional
images provide reasonable markers for accurate tracking of
tissue motion. Elasticity can be imaged by measuring tissue
motion with a speckle tracking algorithm, followed by re-
construction of the elasticity distribution. Ultrasound elasticity
imaging, therefore, consists of three main components: speckle
or internal boundary tracking and evaluation of tissue motion,
measurement of strain tensor components, and reconstruction
of the spatial distribution of the elastic modulus using strain
images.

Quantitative interpretation of any measured tissue response
to applied force must be based on a reasonable mathematical
model of tissue behavior. To date, a linear elastic model has
been used [13], [16], [19]-[23]. For example, to understand
surface acoustic wave characteristics and their quantitative
relation to the mechanical properties of skin, a layered model
of tissue on a semi-infinite half space was used in [22],
[23]. With the assumption of an infinitely extended motion
source, a boundary value problem was formulated in terms
of only one component of the displacement and an integral
solution was found and evaluated numerically. To correlate
the mechanical properties of an inhomogeneous gel-based
phantom with the internal distribution of vibration magnitude
produced by an external low-frequency vibration source, a
finite element analysis was used in [13]. A linear elasticity
model has also been used to estimate the elastic properties of
tissue based on experimental ultrasonic data in the static case
[16], [19].

In this paper, results of measured internal strain and dis-
placement fields from gel-based phantoms obtained with an
ultrasound speckle tracking procedure described in a compan-
ion paper [24] are compared with theoretical predictions of
a linear elastic model accounting for the boundary conditions
of the measurement (i.e., forward problem). In addition, some
aspects of elasticity reconstruction based on measured strain
and displacement fields (i.e., inverse problem) and a proper
theoretical model are discussed.

0885-3010/94$04.00 © 1994 IEEE




SKOVORODA er al.: THEORETICAL ANALYSIS AND VERIFICATION

II. THEORY

A theoretical model for the forward elastic problem for-
mulated here as a boundary value problem with applied
surface displacements was used to predict internal phantom
displacements and strains. Not only will this model help assess
the accuracy of strain images, it will facilitate both algorithm
development for elasticity reconstruction and optimization of
applied external surface deformations.

The parameters describing the deformation of an elastic or
viscoelastic body, i.e., spatial distribution of displacements,
strain and stress, must satisfy the equations of continuum
mechanics presented below [21], [25], [26].

The most general form of Newton’s 2¢ law describing the
motion of a mechanical body is

3
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where o;; is one component of the 2"¢ ranked stress tensor,
u; is the displacement in the z; direction, f; is the body force
per unit volume acting on the body in the z; direction, ¢ is
time and p is density. Equation (1) must be satisfied at every
internal point of the body.

Assuming linear elasticity, the components of the stress ten-
sor in an isotropic, continuous compressible medium including
viscosity are:
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where
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is the trace of the strain tensor, §;; is the Kronecker delta
symbol and ¢;; is one component of the 274 ranked symmetric
strain tensor, defined as
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In (2) the first two terms describe the elastic behavior and
the last two terms the damping of the mechanical body. The
parameters A and p are the Lame coefficients and parameters
¢ and 7 are the coefficients of viscosity. Therefore, in general,
any isotropic continuous mechanical body can be characterized
by a spatial distribution of the viscoelastic parameters, such
as A, p, & and 7. This model of a continuous mechanical body
applies for soft tissue at a spatial scale sampled by diagnostic
ultrasound (i.e., at a scale greater than or comparable to an ul-
trasound wavelength). Note that some tissues, such as muscle,
are anisotropic [21], necessitating a more general stress-strain
relationship than (2) [25], [26]. Anisotropic materials are not
considered in this paper.

Although the elastic component of the stress-strain relation
is written in terms of the Lame coefficients in (2), other
more common elastic moduli can be derived from these two
fundamental parameters. For example, the well-known bulk
modulus B is simply defined as B = X\ + (2/3)u and the
shear modulus is simply p. Expressions for other common
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parameters, such as Young’s modulus £ and Poisson’s ratio
v, can be written in terms of the Lame coefficients:
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If the body is deformed very slowly to the final posi-

tion, only static deformation need be considered. For static
deformation (1) reduces to:

Zaa”m—o

i=1,2,3. (5)

Similarly, all time dependent terms in the stress-strain relation
vanish so that the components of the stress tensor become

Oij = )\@51] + 2pe;;- (6)

That is, for static deformation a mechanical body will act
solely as an elastic body, completely characterized by two
parameters A and pu.

The general expressions of linear elasticity can be greatly
simplified by assuming that all soft tissues, and tissue-like
materials, are incompressible (i.e., Poisson’s ratio equals 0.5).
Since the Poisson’s ratio approaches 0.5 for most soft tissue
[27], the assumption of incompressibility is valid. If the
mechanical body is incompressible, then

©=V.u=0, @)

which determines the volume change due to deformation.
Similarly, if the material volume does not change, then the
longitudinal Lame constant A approaches infinity. Under these
conditions, the stress-strain relation (6) for static deformation
reduces to

oij = pbi; + 2peq;, ¢))
where p is the static internal pressure, defined as [28]
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Therefore, deformation of an incompressible medium can be
completely characterized by a single material parameter y (or
E = 3y, as illustrated in Fig. 1 where p/F is plotted as a
function of Poisson’s ratio). That is, the shear (or Young’s)
modulus completely describes the static elastic properties of
soft tissue, where its value may vary widely between different
types of soft tissue.

Finally, a closed set of coupled differential equations for
unknown displacement vector components u;(z1,Z2,3) and
pressure p(z1, Z2,x3) describing static deformation of a vis-
coelastic, incompressible material can be generated by com-
bining (3)—(5), (7), (8) and eliminating o;; and &;;:

op ¢] Ouy 5} Oui | Ouy
0L 1o (2 ) ¢ T S22 4 T2
+ <u81}1> + 6.’£2 (u(al‘z +61‘1)>

I ox
e} 8u1 3u3
—_ N —— =0
* Ozx3 <u(a$3 * (%1)) th



304 IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL, VOL. 41, NO. 3, MAY 1994

"

WE

o35
Soft
tissues |
@3
T T T T —
[ 1] (5 02 3 04 0s

Fig. 1. The ratio of shear modulus to Young’s modulus (/ E) is plotted as
a function of Poisson’s ratio (v). Note that the region of Poisson’s ratio for
soft tissue is shown, where the ratio of moduli approaches 1/3.
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The first three equations are the equations of equilibrium for a
mechanical body written in terms of the displacements, and the
last equation is the condition of incompressibility. Note that
any spatial variations in elasticity u(z1,z2,z3) are explicitly
included in (9).

The system of (9) has an infinite number of solutions, where
the unique solution is determined by the boundary conditions.
The general statement of mechanical boundary conditions is:

E OiNng — E
J

where n; is the jth component of the unit normal vector at
the body surface, F; is the force per unit area at the surface
acting in direction z; and § is a symbol of variation [26]. In
general, the boundary conditions can be split, where external
applied forces are specified for part of the boundary and
displacements for other parts. For any given external force F;
applied to some part of the surface, the corresponding equation
in (10) is satisfied by the first term with no restriction on
the u; component of the surface displacement. In contrast,
if the displacement u) is given, the corresponding equation
is satisfied by the second term with no additional restriction
on the stress tensor. By solving the system of (9) with
corresponding boundary conditions, the displacement field can
be obtained and, therefore, components of the strain tensor can
be simply calculated from (4). Note that the stress components

§(ui—ud) =0, i=1,23, (10

in the boundary conditions (10) can be written in terms of the
displacements and pressure using (4) and (8).

The main goal of elasticity imaging is to reconstruct the
elastic modulus of any desired internal part of tissue. Based
on the above analysis for incompressible media, elasticity
imaging is reduced to reconstruction of the spatial distribution
of the Young’s modulus E(z1, 22, x3) (or u(z1, 22, z3)). After
elimination of the unknown pressure p(z1,z2,%3), (9) can
be used to reconstruct the distribution of elasticity [29]. It is
important to note that it is not necessary to know the boundary
conditions in detail. Moreover, all information needed for
elasticity reconstruction comes from the region of interest.
This approach, however, requires knowledge of the spatial
distribution of all components of the strain tensor in the region
of interest. Practical implementation, therefore, is limited by
difficulties in measuring all components of the displacement
vector [24], [30]. As a result, different simplified approaches
have been proposed in the static regime [16], [19], [29], [31],
[32], and in the dynamic regime [13], [20], [22], [23]. The
utility of these simplified approaches is ultimately limited
by their accuracy in describing experimental displacement
and strain data for a general spatial distribution of Young’s
modulus.

Any simplified model uses a reduced set of parameters to
characterize the elasticity distribution. Limited experimental
information is then used to solve for these model parameters.
For example, if a solid tumor is modeled as a homogeneous,
spherical inclusion, then we must only estimate the Young’s
modulus, diameter and location of this sphere. Solution of the
forward elastic problem using a particular mechanical model
of tissue can be compared to measured displacement and/or
strain fields. This process can be computed iteratively, where
model parameters are adjusted on each iteration to maximize
the correlation between measurements and predictions. Note
that this process will converge to the unique solution only if
there is a monotonic relation between model parameters and
the limited experimental data. The accuracy of the elasticity
distribution obtained in this way, therefore, is directly related
to the appropriateness of the simplified model used to describe
the actual distribution of inhomogeneities. In general, an
appropriate model must be used or elasticity reconstruction
will exhibit significant artifacts.

To illustrate some of the difficulties in elasticity reconstruc-
tion, two simple examples will be given. An analytic solution
for compressible, uniformly deformed bodies having spherical
or cylindrical inclusions inside has been derived by Goodier
[33]. For a cylindrical inclusion, the inclusion’s longitudinal
axis is perpendicular to the direction of applied deformation.
Similar solutions for an incompressible medium can be readily
derived from Goodier’s results as the value of the Poisson’s
ratio v approaches 0.5. Based on this analysis, the normalized
longitudinal strain component ¢ in the direction of the applied
deformation within the inclusion is shown in Fig. 2 for a
cylindrical inclusion (2-D) and a spherical inclusion (3-D) as
functions of the relative Young’s modulus of the inclusion
(E/Ey). Also presented in this figure is the result for a layered
inclusion (1-D). For all cases, €y represents the corresponding
strain component in the homogeneous body having Young’s
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Fig. 2. Relative strain in the direction of the applied deformation calculated
inside an inclusion as a function of the relative Young’s modulus of inclusion.

modulus Ey. Using these functional relations, the unknown
Young’s modulus of an inclusion can be reconstructed based
on the measured value of €. For example, from the experi-
mental value of ¢ inside the spherical inclusion, the Young’s
modulus of that inclusion can be estimated, as illustrated
in Fig. 2. In general, however, such simple interpretation
of experimental data is impossible, and moreover, may lead
to significant errors in estimating the Young’s modulus. For
example, errors in interpreting measurements from a spherical
inclusion using 2- and 1-D models, noted as A3 and A;3, are
also shown in Fig. 2. Clearly, significant error can occur if the
particular mechanical model of tissue is inappropriate.
Another example further illustrates the importance of using
an appropriate particular model to describe the mechanical
properties of tissue abnormalities. Consider a more complex
spatial distribution of the Young’s modulus. Assume that
E(z1,z2,23) = E(r), where the center of the spherical
(r,6,¢) or cylindrical (r,6) system of coordinates is placed
at the center of a spherically symmetric (3-D) or cylindrically
symmetric (2-D) inhomogeneity such that the direction § = 0
is parallel to the direction of an applied deformation. Based
on Goodier’s solution, we attempt to find the solutions of (9)
for 3-D in the form
up = iU(r)(l + 3cos(26))
ug = V(r)sin(26)
Up = 0
p = Po(r) + P1(r) cos(28),

(11a)

and for 2-D in the form
u, = U(r) cos(26)
ug = V(r)sin(26)
p = Pi(r) cos(26).

(11b)

Using the incompressibility condition, we find that

12)

1 oU
V= —'Z (2U + TE) for 3-D,

1 oU
V= —§<U+ Tﬁ) for 2-D.
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Substituting expressions (11) and (12) into either the spherical
or cylindrical form of (9) and eliminating the pressure, for
both 2- and 3-D cases we obtain an equation coupling U(r)
and E(r):

r48647{{ + a3r3(?:Tg + azrzf% + alr% +aoU =0, (13)
with
as = 2(4 +r),
az = r(rI + 10v),
ay = 2(r’T = 3yr — 12),
ap = 4(r*T + 6) for 3-D,
and
az = 2(3 +r),

ag = T + Tyr — 3,
a1 = 7T — Tyr — 9,
ap = 3(r’T + vr + 3) for 2-D,
where
_10E 1 8’E
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In the particular case where £ = FE; = constant, the
coefficients a; are constants and the general solution of (13)
for the unknown function U(r) can be found analytically [33].

For a general function £ = E(r), the solution of (13) can be
found numerically. The boundary conditions U(0) = 0 and

lim {U(T)} — ¢,

r—00 T

must be satisfied. In addition, all components of the dis-
placement and both the radial longitudinal o, and shear 0,9
components of the stress tensor must be continuous [26]. For
example, using £ = FE(r) shown in Fig. 3(a), the radial
component &, of the strain tensor can be computed along the
axis # = 0, as presented in Fig. 3(b). This Young’s modulus
distribution corresponds to a complex inhomogeneity having
relatively soft interior and hard exterior surrounded by material
having Young’s modulus Ey. The position of F(r)’s maximum
is defined as ro and again, the normalizing value &g is the
corresponding strain component in the homogeneous body.

Reconstruction of the elasticity distribution for this case is
more complicated than in the previous example, requiring at
least measurements of the displacement U(r) along the axis
f = 0 with solution of (13) for an unknown distribution £ =
E(r) under the conditions E = Eq and %—f = 0 for any value
r outside the inhomogeneity. Note that quantitative differences
between model results presented in Fig. 3(b) show the need for
accurate interpretation of experiments since model mismatch
(i.e., sphere, cylinder, “layers”) may lead to significant errors
in reconstruction.

Additionally, not only are proper dimensional considerations
important, but the type of deformation is critical in interpret-
ing strain measurements. The two examples presented above
assume uniform external deformation of the body. This simple
assumption will rarely be the case in practice, especially for
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Fig. 3. (a) Young’s modulus and (b) the corresponding relative radial strain
components, calculated for a inhomogeneity in 3-, 2-, and 1-D statements, as
functions of the normalized radial coordinate.

real clinical applications. Consequently, a realistic, nonuniform
deformation due to complex, mixed boundary conditions must
be properly considered if strain measurements are to be used
for reconstruction of the elasticity distribution.

As shown above, experimental displacement and strain
fields must be used with an appropriate model for proper
reconstruction of the elasticity distribution. Therefore, it is
important to test the agreement between experimental data and
predictions of the forward problem computed with the same
model that ultimately will be used for reconstruction. In the
next section, experimental results obtained with the newly de-
veloped speckle tracking algorithm described in a companion
paper [24] are compared with theoretical predictions based on
the numerical solution of (9) when the boundary conditions
are taken into account. As a first step, only 2-D problems are
investigated in the remainder of this paper.

III. 2-D MODEL

Preliminary experiments were performed on a number of
gel-based phantoms including a particular pair used for all
results reported here. All phantoms were designed to qualita-
tively simulate the mechanical properties of soft tissue [12],
[13], [16], [19]. Originally, two homogeneous cylindrical gels
were made at the same time with nearly identical mechanical

characteristics [1]. Each 88 mm diameter by 140 mm long
cylinder was constructed from 5.5% by weight gelatin (Knox
Gelatine, Inc., Englewood Cliffs, NJ). A circular longitudinal
hole was made in the center of one phantom and filled with
12% by weight gelatin to simulate a hard inclusion 32 mm
in diameter. The presence of the inclusion in the second
phantom could not be detected by manual palpation. In both
the homogeneous phantom and the phantom with central
hard inclusion, 0.4% by weight polystyrene microspheres
(Analytical Grade Cation Exchange Resin, AG 50 W-X12,
Bio-RAD Laboratories, Hercules, CA) with a diameter of
40-120 pm were added as ultrasonic scattering centers. The
concentration of microspheres in the inclusion was the same as
in surrounding material making both phantoms approximately
identical in scattering characteristics.

A schematic of the experimental system used in the present
study is presented in Fig. 4. The phantom was placed in
the tank so that its cylindrical axis was perpendicular to
the axis of a 128 channel, 1-D transducer array operating
at 3.5 MHz. This transducer was attached to the bottom of
the tank. The phantom was centered in the tank so that the
image plane approximated the central plane perpendicular to
the longitudinal axis of the phantom. The tank was filled
with water to provide contact between the array and phantom.
A set of seven hydraulically driven pistons was positioned
so that different surface displacements could be applied to
the top half of the phantom. Pistons were 14 mm wide
by 150 mm long rectangular blocks supported by a circular
arc. The center of this support was located on the central
longitudinal axis of the phantom such that any piston’s force
(displacement) initially was radially directed to the phantom’s
surface. Every piston could be operated independently to
produce any desired distribution of surface displacement. The
surface of every piston, as well as the bottom surface of the
tank, was made rough to prevent slippage between that surface
and the phantom during deformation. Also, the transducer
surface was a rubberlike material preventing slippage.

The experimental system of Fig. 4 can produce varied strain
patterns inside the object to test different inversion algorithms.
In the experiments presented here, however, surface displace-
ments were produced only by the vertical piston located at the
top of the phantom. Displacement of this piston was controlled
by measuring arrival time differences to the central element
of the array. Future studies will investigate displacement and
strain fields produced by alternate surface displacement.

Internal displacement of the phantom was estimated using
the procedure of [24], [34]. Complex baseband images were
generated with a synthetic aperture approach, where special
processing was included in image reconstruction to minimize
grating lobes produced by the large array elements (approxi-
mately 1.5 acoustic wavelengths). Because traditional speckle
tracking techniques fail in the limit of very large motion
(compared to an acoustic wavelength), the method of [24]
accumulates displacement over a large set of small, differential
displacements. Experimental results presented below used a
set of 21 images over a total vertical piston displacement of 4
mm (i.e., 200 pm steps) to quantitatively estimate the vertical
longitudinal component (¢32) of the strain tensor.
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Fig. 4. Schematic representation of the experimental system and phantom
geometry. The bottom of the cylindrical phantom, 88 mm in diameter and 150
mm long, contacts a 128 element linear transducer array used to image the
cross-sectional central plane. A set of the pistons providing the deformation
is on the top, where only the central piston was displaced by 4 mm in the
present experiment.

Based on the particular geometry of our experimental sys-
tem and phantoms, the theoretical model can be simplified.
Because the phantom is placed in the tank so that the image
plane approximates the central axial plane (z3 = 0) of the
phantom, a 2-D approximation of (9) can be used. This
assumes that out-of-plane motion in the imaging plane is
relatively small compared to in-plane displacements, and that
in-plane displacements do not vary as a function of the axial
coordinate in the region close to the imaging plane [26].
Indeed, the z3-symmetry of the phantom and z3-symmetry
of the boundary conditions directly leads to the condition that
us(z1,22,0) = 0. In a region close to the plane z3 = 0, a
Taylor series expansion of the displacement components and
pressure can be incorporated into (9), assuming no slippage
for the points connected to the piston or the bottom of the
tank, to evaluate the 3 dependence of these parameters. Such
an analysis shows that a 2-D approximation is accurate over
the extent of the imaging plane.

With these assumptions, (9) reduces to:

9p 9 ouy 9 Ou; | Oua\\ _
92, ”a—zl(“aa) t o (“(azz + ax)) =0

dp i} Hua 5} Oui | Oup _
a—m”a—xz(“a—xg) * om (“(axz + ax)> +f2=0

Qui | Oup =0, (14)
or:1 Oz
where only the fo component of the force per unit volume,
acting in the x5 direction, does not vanish for our experimental
configuration. This vertical component of the volume force is
the simple combination of gravity and buoyancy, defined as

f2 = g(p — po),

where g is the gravitational acceleration and p and pg are the
density of the phantom and the water, respectively.
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To analyze deformations of a phantom, therefore, the system
of partial differential equations (14) with proper boundary
conditions has to be solved. Because an analytic expression
of the solution cannot be obtained, numerical methods must
be used. The algorithm employed in this paper is a finite
difference method. To properly model both bounded inclusions
and inhomogeneities having continuous spatial distribution of
Young’s modulus, an integro-interpolative method has been
used to construct the conservative finite differential scheme
with a second order approximation to spatial derivatives [35].
In addition, the iterative algorithm used here is based on a
stabilization method commonly employed in the numerical
solution of such partial differential equations [35]. This method
assumes that the unknowns w1, ug and p are not only functions
of spatial coordinates, but also depend on an additional dummy
variable 7, i.e.,

Uy = U1($1,$2,T)
up = ug(x1, %2, T) (15)
P=P(Il,$2,7)v

With this assumption, we can write a new system of equations,
where the right hand side is now simply the first derivative
with respect to the dummy variable:

3}) 8 8u1 a 6u1 8112 _ 8111
%”a(l‘a) + a—(“(‘a—*a—)) =

dp 0 Ouy I} Ouy . Ous _ Oug

m”a—m(*‘@) + éT(“(a—Jfa_» =5
(16)

6”1 + 81”
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ax 1 012 B‘r ’
where k is a normalized coefficient. Note that the boundary
conditions (10) will not change with assumption (15). The
solution of (16) with boundary conditions (10), where the
boundary conditions do not depend on the dummy variable
7, also is a solution of (14) in the limit that 7 approaches
infinity. In this limit, the right hand sides of (16) all vanish.

For the experimental system discussed above, there is
another complication in specifying the boundary conditions.
As shown in Fig. 5, the boundary conditions on the phantom
are functions of the deformation, where the size of the contact
regions to the bottom of the tank and the piston depend on the
magnitude of the top surface displacement. Thus, the boundary
conditions cannot be predicted a priori and must also be
calculated.

Three main parts of the boundary are shown in Fig. 5(a)
for the initial conditions of the phantom. At the bottom point,
shown by an arrow, absence of any displacement was assumed,
i.e., all components of the displacement vector are always
equal to zero guaranteeing no net motion of the phantom. At
the top point, also shown by an arrow in Fig. 5(a), only the u,
component of the displacement vector is zero, which protects
against any rotation of the phantom as a whole body and also
insures that the vertical component u of the displacement
vector of this point is the same as the vertical displacement
of the central piston. Therefore, at these two particular points
displacements on the surface are defined. For all other points
on the surface of the phantom, no forces are applied.
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Fig. 5. Differences in boundary conditions on the phantom surface are
shown, where (a) the central piston just contacts the surface of the phantom,
(b) the central piston displaces the phantom surface.

In the deformed state [Fig. 5(b)] more than these two surface
points are connected to the piston and the bottom of the tank.
An iterative step-wise algorithm has been used to satisfy all
boundary conditions as a function of the deformation. During
each step of this process, every point on the phantom surface
was tested for contact with either the piston (top half of the
phantom surface) or the bottom of the tank (bottom half of the
phantom surface). If a point was connected with the bottom at
a particular step, no more motion of this point was allowed at
subsequent steps. Similarly, if a point contacted the piston at a
particular step, the displacement of this point was restricted to
vertical motion equal to the displacement of the piston in all
subsequent steps. For all other boundary points not connected
with either the piston or the bottom of the tank, the absence
of any external force was assumed. Therefore, the boundary
conditions for these points were satisfied by the first term in
(10) with F; = 0:

onny +o1ane =0

01211 + 02212 = 0,
where 7, and ny are the components of the unit normal vector
at the phantom surface. These equations were written in terms
of the displacement components and pressure using (4) and (8)
and a one-sided, second-order finite difference approximation
to the spatial derivatives. In addition, every point connected to
the bottom of the tank or to the piston on the previous iteration
was tested for continued connection since contact may result
solely from finite error in the iterative scheme.

By replacing the differential equations with finite
differences, the mechanical properties of the body must
be properly discretized on a spatial grid with sampling fine
enough to capture all variations in the Young’s modulus.
A proper grid is chosen so that any further decrease in
the grid itself does not result in significant changes in the
computed displacement and strain fields. In this study, a
uniform, Cartesian discretization of 1.5 mm was used for the
88 mm diameter, cylindrical phantom. The appropriateness
of this spacing for these particular phantoms is illustrated
in the next section. In the numerical scheme, iterations were
continued until the mean squared value of the relative error
for displacements and pressure was less than 1075,

To more closely match the true mechanical properties of the
inhomogeneous phantom, the hard inclusion was simulated
with two layers, a core having 2.5 times larger Young's

(b)

Fig. 6. Conventional B-scan images of (a) homogeneous phantom, shown
in the final deformed position and (b) phantom with central hard inclusion,
shown in the initial undeformed position.

modulus than the surrounding material and an outer annulus
surrounding the core with a Young’s modulus only 1.75 times
greater than the surrounding material. The diameter of the core
was assumed to be 28 mm and the thickness of the annulus
2 mm, resulting in a total inclusion diameter of 32 mm. This
assumption is based on the procedure for making the inclusion,
where the hole in the phantom is filled with a gelatin solution
at a temperature slightly higher than that of the phantom. The
temperature difference can produce the small annulus between
the inclusion and the surrounding material. It is assumed that
the Young’s modulus of this region should be between that of
the phantom itself and the inclusion. The value of the relative
Young’s modulus for the inclusion’s core was chosen based on
an approximately linear dependence of the Young’s modulus
on gel concentration in this range [1].

IV. RESULTS

In Fig. 6, B-scan images are presented for both the ho-
mogeneous phantom and the phantom with hard inclusion.
The images are displayed over a 100 x 100 mm area, where
the transducer array is at the bottom and the central piston is
located at the top. Fig. 6(a) corresponds to the homogeneous
phantom, displayed after the top piston is displaced vertically
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Fig. 7. Measured displacement images of (a) homogeneous phantom and (b) phantom with hard inclusion are compared to theoretical prediction of the
displacement for the same (c) homogeneous and (d) inhomogeneous phantoms. All images use the same absolute display dynamic range, where white
represents 4 mm vertical displacement and black represents no displacement.

by 4 mm. In contrast, Fig. 6(b) shows the phantom with
hard inclusion in the initial undeformed position. It is hard
to detect the inclusion from the B-scans. Although not of the
highest quality because a synthetic aperture reconstruction was
used, these images are sufficient for displacement and strain
measurements as described in [24].

The corresponding vertical displacement distributions cre-
ated by the central vertical piston are shown in Fig. 7, where
the two top panels [Fig. 7(a) and (b)] are measured values of
the displacement and the two bottom panels [Fig. 7(c) and (d)]
are simulated values. Left panels represent the homogeneous
phantom and right panels the phantom with hard inclusion.
All images cover an area of 100 x 100 mm, where the
same quantitative gray scale is used for all images. Here full
white represents a 4 mm negative displacement and full black
corresponds to no displacement. The largest displacement
magnitudes can be seen at the top of these images, where
the piston provided the surface displacement, with smooth
reduction to zero at the constrained bottom surface. Nonzero
measured displacement outside the phantom is related to
imaging artifacts and cannot be filtered. Nevertheless, the
quality of displacement images within the phantom is sufficient
for quantitative strain imaging.

d

Similar images of the £33 strain component are presented in
Fig. 8, where the strain field is displayed over the same 100
by 100 mm area. The signal-to-noise ratio of these images
depends on position, but is estimated to be about 30 to 1 at
the center of the inhomogeneous phantom [24]. Again, the
left images are measured [Fig. 8(a)] and simulated [Fig. 8(c)]
values of the strain component for the homogeneous phantom
and the right panels show the same images [Fig. 8(b) and
(d)] for the phantom with inclusion. Bright areas represent
regions with the highest strain magnitude. In all images, the
region of highest strain magnitude, starting at the top near
the position of the piston and extending to the bottom where
the transducer array has been attached, can be easily seen.
Because the contact area of the phantom with the piston is
not the same as that at the bottom of the tank, there is some
difference in the strain distribution at the top and bottom of the
phantom on both experimental and theoretical strain images.
This effect also can be seen in Fig. 9. Note that all images in
Fig. 8 are displayed over the same absolute dynamic range, i.e.,
over the same linear quantitative scale, where full brightness
represents a longitudinal strain magnitude of 5.4% and larger,
and complete darkness represents a strain magnitude of 2.7%
and lower.
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Fig. 8. Measured images of the vertical 22 component of the strain tensor for the (a) homogeneous and (b) inhomogeneous phantoms are compared with
model predictions for the same (c) homogeneous and (d) inhomogeneous phantoms. Note that all images are displayed over the same absolute dynamic range.

Strain A-scans for the different phantoms are compared
in Fig. 9, where the top panel presents measured and pre-
dicted strain distributions along the central vertical line in
the homogeneous phantom, and the bottom panel shows the
same comparison for the phantom with inclusion. The results
presented in Figs. 8 and 9 demonstrate that both qualitatively
and quantitatively the theoretical predictions reasonably match
measured strain images. Moreover, significant changes in the
strain magnitude are clearly evident in the region of the
inclusion. Differences between the true boundary conditions
and the boundary conditions used in the model may cause the
slight disagreement between theory and experiment evident in
the bottom and top regions of the phantom. Finally, at the top
of the phantom, where the mismatch in acoustic impedance
between the piston and phantom is huge, the echo-signal was
saturated and strain data were not computed.

V. DISCUSSION

In this study a common linear elasticity model has been
used to predict internal strains resulting from applied external
displacements/forces [13], [16], [191, [21]-[23]. This model
assumes an incompressible, linear elastic medium to formulate

a boundary value problem. The method of finite differences
was applied to obtain internal displacement/strain components
for physical cases where the boundary conditions cannot be
predicted a priori.

As reported in a companion paper, a newly developed
method for accurate detection of tissue motion using phase
sensitive speckle tracking has been applied to ultrasound elas-
ticity imaging [24]. Preliminary studies show that quantitative
strain images can be obtained with sufficient contrast-to-
noise ratio to visualize small changes in elasticity. As is
evident from Figs. 7-9, measured and simulated results match
well with the exception of small regions close to the piston
or bottom of the tank. This is probably caused by some
boundary slippage during the measurements compared to the
assumption of no boundary slippage in the computations.
Nevertheless, the correlation presented in Figs. 7-9 shows
that strain and displacement measurements are reasonably
accurate suggesting that quantitative elasticity imaging for
medical diagnosis, and other applications as well, is possible.
Note that experimental results of the type presented here are
sufficient to reconstruct the elasticity distribution for certain
particular models of inhomogeneity [29], [31], [32]. If the




SKOVORODA et al.: THEORETICAL ANALYSIS AND VERIFICATION

Experiment
= Theory
0.08
0.06
£
£ 004
]
0.02 4
0.00 T v T ™
0 20 40 60 80
Vertical Position (mm)
(@)
Experiment
e Theory
0.08
0.06
£
£ 0041
@
0.02 4
0.00 T T T —
0 20 40 60 80

Vertical Position (mm)
(b)

Fig. 9. Strain A-scans along the central vertical line for (a) homogeneous
phantom and (b) phantom with inclusion. Note the strong correlation between
theory and experiment.

lateral component of the displacement and associated strain
components can be estimated [24], then restrictions on these
particular models can be decreased.

For the experiments reported here, the applied deformation
was about 5% of the initial size of the phantom, where the
appropriateness of the linear model is not in question. At
this level of average internal strain, a nonpalpable inclusion
with Young’s modulus only 2.5 times greater than surrounding
material was easily detected. In clinical applications, e.g.,
breast imaging, much greater surface displacements can be
applied potentially enhancing elasticity contrast resolution. In
this regime, however, nonlinear elasticity theory must be used
for proper interpretation of experimental data {21], [36]. Future
studies will be directed toward analyzing strain measurements
in the limit of large surface displacements and large average
strains to identify the limit of the linear elastic model.

Simulation results shown in Figs. 7-9 were computed
assuming the Young’s modulus of the inclusion’s core was
2.5 times larger than surrounding material. Much greater
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differences in elastic moduli are expected in real tissue. If
similar results can be obtained in inhomogeneous, 3-D objects
such as the female breast, then elasticity imaging may greatly
expand the range of palpation for cancer detection. In general,
however, elasticity inhomogeneities in the body can take on
any geometric form at different locations. Different patterns of
surface deformation may be needed to increase detectability
of complex inhomogeneities especially if only limited strain
data are measured. For example, the full piston array of
Fig. 4 can be used with measurements of only the vertical,
longitudinal component of the strain to expose inclusions far
from the center of a cylindrical body. Consequently, to fully
realize the potential of elasticity imaging, future work must be
directed toward developing proper mathematical approaches
based on different external deformations for detection of
arbitrary lesions.

Quantitative strain and displacement results of the type
presented here can be corrupted by tissue motion during the
experiment. There are three primary sources of tissue motion
in clinical imaging: cardiac induced motion, breathing and
the finite propagation time of the deformation. The possible
influence of these sources on strain images has already been
discussed in the companion paper and must be studied in the
future [24]. In conjunction with these experimental studies the
approach used here can be modified to include these effects,
where the motion/time dependence of the system will be
considered explicitly in (1).

In conclusion, we have used a mechanical model consid-
ering the body as a linear elastic medium to predict internal
displacement and strain images. Preliminary results show good
agreement between measurement and theory even for the
complex boundary conditions encountered in these studies.
Such agreement suggests that quantitative reconstruction of
the elastic modulus may be possible for complex objects
such as the human body. Full reconstruction of the elastic
properties of soft tissue without any assumptions about the
spatial distribution of the elastic modulus should be based on
reasonably good measurements of the complete 3-D spatial
distribution of all strain tensor components. If limited mea-
surements of the strain are obtained, then a correct simplified
model of inhomogeneities must be used for reconstruction.
The ultimate quality of reconstructions possible with a par-
ticular model based approach, therefore, is determined by the
degree to which the particular model can accurately describe
experimental data in complex objects.
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