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Prospects for Elasticity Reconstruction
in the Heart

Matthew O’Donnell, Fellow, IEEE, and Andrei R. Skovoroda

Abstract—The elastic moduli in anisotropic media can
be estimated using either direct mechanical or sound speed
measurements. Here we compare moduli in the passive
heart estimated with different methods and demonstrate
that high-frequency (i.e., ultrasonic) sound speed measure-
ments are inconsistent with static deformations and low-
frequency shear wave results. Both tissue fixation and the
high-operating frequency of ultrasonic measurements con-
tribute to these discrepancies. Moreover, the precision of
ultrasonic sound speed measurements required to estimate
elastic moduli describing static deformations of a nearly in-
compressible anisotropic medium such as the heart appears
to be beyond the scope of current methods. We conclude
that an incompressible anisotropic elastic model is appro-
priate for elasticity reconstruction in the heart, in which
three independent constants characterize small strain be-
havior, but four are needed for a fully nonlinear description
of finite deformations.

I. Introduction

To date, there have been limited studies of ultrasonic
elasticity imaging in anisotropic media. With the ad-

vent of ultrasonic strain rate imaging of the heart, the
problem of elastic modulus reconstruction in anisotropic
media needs to be explored in more detail. Previous
studies from two research communities have approached
anisotropy quite differently.

In a classic set of papers, the anisotropic elastic prop-
erties of the passive (i.e., unperfused, nonbeating) heart
have been analyzed using static force-deformation exper-
iments and finite-element modeling [1]–[3]. These studies
showed that the unperfused heart could be modeled as an
incompressible, anisotropic medium with three indepen-
dent elastic moduli describing the small strain (i.e., linear)
behavior.

An alternate approach models the passive heart as a
compressible, transversely orthotropic medium and uses
ultrasonic wave speed measurements to estimate the five
independent elastic moduli [4]–[7]. The results of these
studies differ by several orders of magnitude from those
presented in [1]–[3]. In this paper, we explore the elas-
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tic properties of a transversely orthotropic medium in the
limit of incompressibility to reconcile the large differences
in elastic moduli computed from ultrasonic and direct me-
chanical measurements. Our ultimate goal is to develop
an elastic model appropriate for elastic modulus recon-
struction in the heart using multidimensional ultrasonic
strain and strain rate images. We start with a review of
the elastic properties of both isotropic and transversely
orthotropic media.

II. Isotropic Medium

For isotropic materials, Hook’s law takes the following
simple form relating the stress tensor, σ, to the symmetric
strain tensor, ε:

σij = λθδij + 2µεij, i, j,= 1, 2, 3, (1)

where λ and µ are Lame coefficients representing the two
independent elastic moduli fully describing the medium’s
elastic properties. Subscripts for both stress and strain re-
fer to Cartesian coordinates. And, θ is the trace of the
strain matrix, representing the divergence of the displace-
ment vector.

To simplify later calculations for anisotropic materials,
define a reduced notation for stress and strain tensors:




σ1 = σ11
σ2 = σ22
σ3 = σ33
σ4 = σ13 = σ31
σ5 = σ23 = σ32
σ6 = σ12 = σ21







ε1 = ε11
ε2 = ε22
ε3 = ε33
ε4 = ε13 = ε31
ε5 = ε23 = ε32
ε6 = ε12 = ε21




. (2)

With this notation, Hook’s law takes the following ma-
trix form:




σ1
σ2
σ3
σ4
σ5
σ6




=




λ + 2µ λ λ 0 0 0
λ λ + 2µ λ 0 0 0
λ λ λ + 2µ 0 0 0
0 0 0 2µ 0 0
0 0 0 0 2µ 0
0 0 0 0 0 2µ







ε1
ε2
ε3
ε4
ε5
ε6




.
(3)

These relations can be summarized as σ = Cε, where
C is the elastic modulus matrix. The full set of equations
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reduces to two independent 3 × 3 matrix equations for
longitudinal (Cl) and shear (Cs) components:


σ1

σ2
σ3


 =


λ + 2µ λ λ

λ λ + 2µ λ
λ λ λ + 2µ





ε1

ε2
ε3


 , (4)


σ4

σ5
σ6


 =


2µ 0 0

0 2µ 0
0 0 2µ





ε4

ε5
ε6


 . (5)

The incompressibility condition is a constraint on the
strain, specifically the trace of the strain matrix. Conse-
quently, we also must express the strain in terms of the
stress to define the proper limits on elastic moduli for in-
compressible media. To solve for the strain, Hook’s law
must be inverted (i.e., ε = C−1σ), where C−1 is the in-
verse of the elastic modulus matrix (i.e., compliance). For
shear terms, the inversion is trivial. For longitudinal terms,
the inverse of the 3 × 3 matrix Cl is:

C−1
l =

1
∆


2(λ + µ) −λ −λ

−λ 2(λ + µ) −λ
−λ −λ 2(λ + µ)


 , (6)

where ∆ is the determinant of Cl divided by the common
factor 2µ, and is given by:

∆ = 2µ(3λ + 2µ). (7)

This expression can be further reduced into a more familiar
form by noting that the Young’s modulus E can be defined
in terms of the Lame constants as:

E =
µ(3λ + 2µ)

(λ + µ)
, (8)

and Poisson’s ratio ν can be defined similarly in terms of
the Lame constants as:

ν =
λ

2(λ + µ)
. (9)

Given these definitions, C−1
l reduces to:

C−1
l =

1
E


 1 −ν −ν

−ν 1 −ν
−ν −ν 1


 . (10)

Consequently, for an isotropic compressible medium, the
longitudinal elastic properties can be fully characterized by
two sets of complementary parameters: [λ, µ] or [E, ν] [8].

III. Transversely Orthotropic Medium

The elastic modulus matrix for a medium with trans-
versely orthotropic symmetry—as would be found in a
muscle fiber, for instance, in which the fiber axis is de-

fined as the z (i.e., i = 3) axis—can be written in terms of
five independent elastic moduli:

C =




C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 2C44 0 0
0 0 0 0 2C44 0
0 0 0 0 0 (C11 − C12)




.
(11)

Note that the i = 1, 2 dimensions are isotropic and, conse-
quently, C11 can be recognized as equivalent to (λ + 2µ),
C12 equivalent to λ, and (C11 − C12) equivalent to 2µ.
Consequently, the five independent elastic moduli for this
symmetry group are [λ, µ, C13, C33, C44], the longitudinal
elastic matrix Cl can be written as:

C1 =


λ + 2µ λ C13

λ λ + 2µ C13
C13 C13 C33


 , (12)

and the shear elastic matrix Cs can be written as:

Cs =


2µ13 0 0

0 2µ13 0
0 0 2µ


 , (13)

where µ13 = C44 is an alternate notation often used for
the transverse-axial shear modulus. This means the longi-
tudinal elastic properties can be characterized fully by the
four independent moduli [λ, µ, C13, C33].

To solve for the strain, Hook’s law must be inverted
(i.e., ε = C−1σ), where C−1 is the inverse of the elastic
modulus matrix. For shear terms, the inversion is again
trivial. For longitudinal terms, the inverse of the 3 × 3
matrix Cl is:

C−1
l =

1
∆


 α11 −α12 −α13

−α12 α11 −α13
−α13 −α13 α33


 , (14)

where the matrix elements are defined as:

∆ = 4µ
(
C33(λ + µ) − C2

13
)
,

α11 = C33(λ + 2µ) − C2
13,

α12 = C33λ − C2
13,

α13 = C13(λ + 2µ − λ) = 2µC13,

α33 = (λ + 2µ)2 − λ2 = 4µ(λ + µ).

(15)

Similar to the isotropic case, the matrix elements can be
related to equivalent Young’s moduli and Poisson’s ratios
such that C−1

l becomes:

C−1
l =




1
E1

−ν12

E1

−ν13

E3−ν12

E1

1
E1

−ν13

E3−ν13

E3

−ν13

E3

1
E3


 , (16)
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where

E1 = ∆/α11,

E3 = ∆/α33,

ν12 = α12/α11,

ν13 = α13/α33.

(17)

Consequently, for a transversely orthotropic compress-
ible medium, the longitudinal elastic properties also can
be characterized fully by the four independent parameters
[E1, E3, ν12, ν13].

In the next section we explore how these equations can
be reduced for the case of incompressible media. Note that
we will not consider the degenerate case where ∆ = 0 for
a transversely orthotropic medium. This is a very special
case that will not happen for normal elastic materials con-
sidered in biomechanics. In the limit of a transversely or-
thotropic medium approaching an isotropic medium (i.e.,
C13 → λ, C33 → λ + 2µ), ∆ is nonzero.

IV. Incompressible Media

Under the restriction of a small deformation (i.e., linear
elasticity) the incompressibility condition is:

θ = ε11 + ε22 + ε33 = 0. (18)

This condition does not depend on the details of the ap-
plied stress and simply is the differential form of volume
conservation (i.e., ∆V = 0). For an isotropic material, ap-
plying this condition to the strain using εεε = C−1σ and
(10) for the inverse elastic modulus matrix yields the fol-
lowing equation for θ:

θ =
1
E

[σ11(1 − 2ν) + σ22(1 − 2ν) + σ33(1 − 2ν)] = 0,

θ =
3(1 − 2ν)

E
σ = 0, (19)

where σ = [σ11+σ22+σ33]/3 is the mean internal pressure.
This means that ν = 1/2 to ensure that θ = 0 for an
arbitrary load.

Imposing (18), the limits of the elastic moduli can be
explored using the relations between the Lame constants
and the Young’s modulus and Poisson’s ratio:

λ =
νE

(1 + ν)(1 − 2ν)
, µ =

E

2(1 + ν)
. (20)

For an incompressible medium, ν → 1/2, µ → E/3, λ →
∞, and, according to (19) and (20), the product λθ equals
σ, usually defined as the scalar pressure P . Therefore, (1)
for an incompressible medium reduces to:

σij = Pδij + 2µεij , i, j,= 1, 2, 3, (21)

where P = lim(λθ) when λ → ∞ and θ → 0. Note that µ
must be finite to ensure a finite shear elastic matrix, which
means that the Young’s modulus also must be finite. Thus,

according to (20) and (21), only one material parameter
(µ or E, where E = 3µ) is needed to describe the behavior
of an isotropic incompressible medium, but in this case we
have the additional scalar unknown P .

Let us repeat the analysis for an incompressible trans-
versely orthotropic medium. If ∆ �= 0, from (14) and (15),
the incompressibility condition can be expressed as:

θ =
α11 − α12 − α13

∆
(σ11 + σ22) +

α33 − 2α13

∆
σ33 = 0.

(22)

Define the two new variables:

Q1 = (C13 − λ) ,

Q2 = [C33 − (λ + 2µ)] .
(23)

Note that for an isotropic material Q1 = Q2 = 0. Us-
ing these new variables and the definitions of the inverse
elastic modulus matrix components, the terms in the in-
compressibility condition of (22) take the form:

α11 − α12 − α13 = 2µ(2µ + Q2 − Q1),
α33 − 2α13 = 4µ(µ − Q1),

∆ = 4µ[λ(3µ + Q2 − 2Q1) + (2µ2 + µQ2 − Q2
1)]. (24)

Therefore, we can conclude that the incompressibility
condition is satisfied for any σ11, σ22, and σ33 if λ → ∞
while µ, Q1, and Q2 are finite. In this case, the longitudinal
terms reduce to:

σ11 = P + 2µε11 + Q1ε33,

σ22 = P + 2µε22 + Q1ε33,

σ33 = P + 2µε33 + Q1(ε11 + ε22) + Q2ε33, (25)

where P = lim(λθ) when θ → 0. These formulas are the
stress-strain relations for an incompressible transversely
orthotropic medium, in which the elastic behavior is fully
characterized by the four material constants [µ, µ13, Q1,
Q2] and the scalar pressure P .

The longitudinal elastic properties of a compressible,
transversely orthotropic medium also can be fully de-
scribed by the Young’s moduli and the Poisson’s ratios, in
which there is a one-to-one correspondence between these
parameters and the elastic moduli of Hook’s law:

λ = E1(E3ν12 + E1ν
2
13)/δ,

µ = E1[E3(1 − ν12) − 2E1ν
2
13]/2δ,

C13 = E1E3ν13(1 + ν12)/δ,

C33 = E2
3 (1 − ν2

12)/δ,

δ = (1 + ν12)[E3(1 − ν12) − 2E1ν
2
13].

(26)

Similarly, the two elastic moduli defined above to sim-
plify notation for an incompressible medium are:

Q1 = (C13 − λ) = E1[E3(ν13 + ν12ν13 − ν12) − E1ν
2
13]/δ,

Q2 = [C33 − (λ+2µ)] = [E2
3 (1− ν2

12)−E1E3 +E2
1ν2

13]/δ.

(27)



o’donnell and skovoroda: comparison of moduli for use in the passive heart 325

Using these alternate definitions, the incompressibility
condition of (22) becomes:

θ =
[(1−ν12)/E1−ν13/E3](σ11+σ22)+(1−2ν13)σ33/E3 = 0.

(28)

For this equation to be satisfied for an arbitrary load
(i.e., arbitrary σ11, σ22, or σ33), the following two condi-
tions must be satisfied simultaneously:

ν13 =
1
2
, v12 = 1 − E1

2E3
. (29)

Note if the medium is isotropic, then E1 = E3 = E,
and these two conditions lead to ν13 = ν12 = ν = 1

2 . For
normal materials found in biomechanics, the requirement
ν > 0 seems to be valid. This requirement is automatically
satisfied for the limit value of ν13 = 1

2 , but for the limit
value of ν12 = 1 − E1

2E3
only if E1 ≤ 2E3.

Using the Young’s moduli and Poisson’s ratios to de-
scribe a transversely orthotropic material, it appears that
the requirement of medium incompressibility reduces the
number of material parameters needed to describe longi-
tudinal components to two: [E1, E3]. Unfortunately, (29)
cannot be directly used in the stress-strain relations. Also,
note that δ is zero for this case, signaling that the conver-
sion between the two sets of elastic moduli presented in
(23) is not defined. Therefore, the limit behavior of coef-
ficients in (26) and (27) when (ν12, ν13) →

(
1 − E1

2E3
, 1

2

)
needs some additional consideration.

To consider the limit case of incompressibility, use
the local cylindrical system of coordinates in the plane
(ν12, ν13) with the center

(
1 − E1

2E3
, 1

2

)
. That is, assume

that:

ν12 =
(

1 − E1

2E3

)
− rC, ν13 =

1
2

− rS, (30)

where C = cos(α), S = sin(α). If a medium is nearly in-
compressible, the value of r is small, and for incompressible
medium the limit r → 0 must be evaluated.

Using (26), (27), and (30), for small r we obtain:

δ = r[(4E3 − E1)−2rCE3][(E3C +2E1S)−2E1rS
2]/2E3,

λ = E1(E3ν12 + E1ν
2
13)/δ

=
E3E1[(4E3 − E1) − 4r(E3C + E1S) + 4r2E1S

2]
2r[(4E3 − E1) − 2rCE3][(E3C + 2E1S) − 2E1rS2]

,

µ = E1[E3(1 − ν12) − 2E1ν
2
13]/2δ

=
E1E3

[(4E3 − E1) − 2rCE3]
,

Q1 = E1[E3(ν13 + ν12ν13 − ν12) − E1ν
2
13]/δ

=
E3E1{[E3(C − 4S) + 3E1S] + 2rS(E3C − E1S)}
[(4E3 − E1) − 2rCE3][(E3C + 2E1S) − 2E1rS2]

,

Q2 = [E2
3 (1 − ν2

12) − E1E3 + E2
1ν2

13]/δ

=
2E3[(2E2

3C − E1E3C − E2
1S) + r(E2

1S2 − E2
3C2)]

[(4E3 − E1) − 2rCE3][(E3C + 2E1S) − 2E1rS2]
.

(31)

These expressions have different behavior when r → 0
for different values of (4E3 − E1). If (4E3 − E1) �= 0 from
(31) the elastic moduli become:

λ ≈ E3E1

2r(E3C + 2E1S)
→ ∞,

µ → E1E3

(4E3 − E1)
,

Q1 → E3E1[E3(1 − 4t) + 3E1t]
(4E3 − E1)(E3 + 2E1t)

,

Q2 → 2E3(2E2
3 − E1E3 − E2

1 t)
(4E3 − E1)(E3 + 2E1t)

,

(32)

where t = S/C = tan(α).
In contrast, if (4E3 − E1) = 0, from (31) we have:

λ =
4E3[(C + 4S) − 4rS2]
rC[(C + 8S) − 8rS2]

→ ∞,

µ = −2E3

rC
→ ∞,

Q1 = −2E3[(C + 8S) + 2rS(C − 4S)]
rC[(C + 8S) − 8rS2]

→ ∞,

Q2 =
E3[2(C + 8S) − r(16S2 − C2)]

rC[(C + 8S) − 8rS2]
→ ∞.

(33)

Note that if (4E3 − E1) = 0 for an incompressible
medium, from (30) ν12 = −1 and µ = ∞. From (33)
we conclude that, if (4E3 − E1) = 0, the set of pa-
rameters (E1, E3, ν12, ν13) cannot be used to derive the
stress-strain relation for an incompressible transversely or-
thotropic medium. If (4E3−E1) �= 0, the last terms in (32)
have finite values when r → 0. These values, however, de-
pend on the angle α in the (ν12, ν13) plane, which was
used to reach the limit point (ν12, ν13) =

(
1 − E1

2E3
, 1

2

)
.

Therefore, in general, the limit case of an incompressible
transversely orthotropic medium cannot be described us-
ing (29) and material parameters [E1, E3]. This fact can
lead to the mistaken conclusion that a transversely or-
thotropic medium cannot be incompressible. The correct
conclusion seems to be that the stress-strain relations in
an incompressible transversely orthotropic medium gener-
ally cannot be described using only a total of three inde-
pendent material parameters. The angle α [or parameter
t used in (32)] is the fourth material parameter needed
to describe the complete stress-strain relation. As shown
below, however, in many physically realizable cases, an in-
compressible, transversely orthotropic material can be well
characterized using only three elastic moduli.

V. Approximating Incompressible Transversely

Orthotropic Media

Using an isotropic material as the limit case, we can
approximate the proper angle to derive a one-to-one cor-
respondence between the complementary descriptions of
an incompressible, transversely orthotropic medium. The
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relations in (31) must contain the relations for an incom-
pressible, isotropic medium as a limit case. For this case,
(31) reduces to:

λ ≈ E/2r(C + 2S),
µ ≈ E/3,

Q1 ≈ E(C − S)/3(C + 2S),
Q2 ≈ 2E(C − S)/3(C + 2S).

(34)

From (34) we can conclude that, for an isotropic
medium as r → 0, (34) reduces to λ → ∞, µ = E/3,
Q1 = 0, and Q2 = 0 if C = S (i.e., t = 1). Now, keep this
condition for an anisotropic medium. With this limitation
we can rewrite (32) in the form:

λ → ∞,

µ → E1E3

(4E3 − E1)
,

Q1 → 3E3E1(E1 − E3)
(4E3 − E1)(E3 + 2E1)

,

Q2 → −2E3(E1 − E3)(E1 + 2E3)
(4E3 − E1)(E3 + 2E1)

.

(35)

Therefore, if (4E3 − E1) �= 0, the stress-strain relations
for an incompressible, transversely orthotropic medium be-
come:

σ11 = P +
2E1E3

(4E3 − E1)
ε11 +

3E1E3(E1 − E3)
(4E3 − E1)(E3 + 2E1)

ε33,

σ22 = P +
2E1E3

(4E3 − E1)
ε22 +

3E1E3(E1 − E3)
(4E3 − E1)(E3 + 2E1)

ε33,

σ33 = P +
2E1E3

(4E3 − E1)
ε33

+
3E1E3(E1 − E3)

(4E3 − E1)(E3 + 2E1)
(ε11 + ε22)

− 2E3(E1 − E3)(E1 + 2E3)
(4E3 − E1)(E3 + 2E1)

ε33,

σ13 = 2µ13ε13,

σ23 = 2µ13ε23,

σ12 =
2E1E3

(4E3 − E1)
ε12.

(36)

These formulas can be considered as stress-strain rela-
tions for transversely orthotropic, incompressible medium,
written using the second set of material parameters.
Clearly, only three material parameters (E1, E3, µ13) are
needed, where again we have the additional scalar un-
known P . Expressions (36) contain (21) as a limit case for
isotropic medium when E1 = E2 = E and µ13 = µ. Note
also that (4E3−E1) �= 0 if ν12 > 0, i.e., if E1 ≤ 2E3. At the
same time, we must remember that (36) was obtained us-
ing the strong assumption C = S. Unfortunately for highly
anisotropic materials, this assumption is not obvious and
must be considered as an additional strong limitation. To
describe the elastic behavior of an incompressible, trans-
versely orthotropic medium using (36), it is necessary that

TABLE I
Elastic Moduli of Passive Dog Myocardium Estimated for

Direct Mechanical Measurements Assuming an

Incompressible Medium (adapted from [2], [3]).

Modulus Value (kPa)

Q1 0
Q2 13.1
µ13 3.2
µ 1.4

this limitation be justified using force-deformation mea-
surements on the material of interest.

VI. Discussion

Guccione et al. [2], [3] computed three independent
elastic moduli for the passive heart based on optimal
fits to force-deformation measurements in intact dog my-
ocardium. Their model was incompressible and should
have produced four independent elastic moduli. Nonlin-
ear, least-squares fits, however, were optimized by setting
one of the coefficients to zero (Q1 in our notation). Tak-
ing the small strain limit of their nonlinear, constitutive
relations, and converting to our notation, the four indepen-
dent moduli estimated from their results are summarized
in Table I.

These values represent the zero strain limits of the non-
linear, constitutive relations and should be considered the
lower bound on the magnitude of the moduli in the linear
elastic regime.

Recent work in transient elastography has investigated
shear wave speeds at very low propagation frequencies
(100 Hz) to estimate anisotropy in the shear elastic mod-
uli of striated muscle [9]. Measurements in the human bi-
ceps exhibited anisotropy (a factor of 4 in wave speed,
representing a factor of 16 in the shear elastic moduli)
greater than that reported in myocardium, but the mag-
nitude of the shear modulus (µ = 9 kPa) is consistent
with the results reported in Table I, given that these mea-
surements were obtained with the muscle loaded (i.e., not
in the zero strain limit for this highly nonlinear material).
Overall, both low frequency shear wave and static deforma-
tion measurements strongly suggest that all elastic moduli
describing static deformation of the passive heart in the
linear regime should be on the order of 10 to 20 kPa.

In materials characterization, elastic moduli in an
anisotropic material are often estimated from ultrasonic
sound speed measurements. These moduli then are used
to describe static deformations of the material. Similar
methods have been applied to the passive heart to pro-
duce estimates of anisotropic cardiac elastic moduli [4]–[7].
Measurements of ultrasonic sound speeds at high frequen-
cies (5 MHz) in formalin-fixed human myocardium pro-
duce values for the five elastic moduli of a transversely
orthotropic, compressible model, as presented in Table II.
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TABLE II
Elastic Moduli of Passive Dog Myocardium Estimated from

Ultrasonic Velocity Measurements Assuming a Compressible

Medium (adapted from [4]–[7]).

Modulus Value (GPa)

C11 2.462
C33 2.527
C13 2.445
C44 9.0 × 10−3

C66 8.5 × 10−3

Note that the shear elastic moduli are more than three
orders of magnitude greater than those estimated using ei-
ther low-frequency shear wave or static deformation mea-
surements. Formalin fixation clearly contributes to the dif-
ference; previous studies noted that fixation can increase
the static shear modulus by at least an order of magni-
tude [10]. Also, measurements of shear properties at high
frequencies are very hard to extrapolate to low frequencies
given the highly dispersive nature of shear wave propaga-
tion in soft tissue [11].

Using these values, the equivalent elastic moduli of an
incompressible model can be computed. An incompressible
model should yield reasonable results as ν13 is 0.4975 for
these parameters, closely approximating the incompress-
ible value of 0.5. The two moduli Q1 and Q2 describing
anisotropies in the longitudinal elastic matrix are:

Q1 = (C13 − λ) = (C13 − C11 + C66)
= (2.445 − 2.462 + 0.0085)GPa

= −0.0085 GPA = −8.5 MPa.

Q2 = (C33 − C11) = (2.527 − 2.462)GPa

= 0.065 GPa = 65.00 MPa.

(37)

Note that Q1 is negative. If C11 were 2.4535 GPa, rep-
resenting a 0.35% change in the modulus (0.17% change
in the sound speed), then Q1 would be zero, matching
the static results. As noted in [4], ultrasonic wave speed
measurements on well controlled tissue samples are precise
only to about 0.20%. Consequently, it is virtually impos-
sible to yield a reasonable estimate of Q1 using these pa-
rameters. Similarly, because computation of Q2 requires
the difference in elastic moduli computed directly from
wave speed measurements, the error in this parameter is
nearly 40%. With this level of error, it is nearly impossi-
ble to judge the relative contributions of different elastic
moduli let alone the absolute magnitudes. And, to esti-
mate Q2 from the longitudinal wave speed to a precision
of 10 kPa, the speed must be measured to a precision of
about two parts per million. This is beyond the scope of
conventional ultrasonic measurements on soft tissue sam-
ples. Consequently, it is very difficult, and virtually impos-
sible in most cases, to accurately compute elastic moduli
from ultrasonic sound speed measurements that describe
static soft tissue deformations.

Both static deformation experiments and ultrasonic
sound speed measurements confirm that the passive heart
can be modeled as an incompressible material. This as-
sumption was justified originally over 20 years ago by Vos-
soughi et al. [12] and has helped improve the accuracy of
multidimensional, ultrasonic speckle tracking algorithms
[13]–[15]. More recent studies suggest that, even in the per-
fused heart, volume conservation at the regional level is a
good approximation [16]. Assuming both incompressibility
and modulus values derived from measurements during di-
astole, reconstructed strains differ from true values by at
most 10% in peak systole. Given the large dynamic range
in cardiac elastic moduli due to pathological processes, a
10% error from model imperfection seems like a very small
price to pay to gain the signal-to-noise ratio benefits of in-
compressibility processing.

However, a complete description of cardiac elastic be-
havior must include anisotropic moduli in which four inde-
pendent constants are required theoretically for an incom-
pressible, transversely orthotropic medium, but three inde-
pendent constants appear adequate to model small strain
behavior. Note that the ratio of Q2 to µ is nearly an order
of magnitude; consequently, significant reconstruction er-
rors will result if a single elastic modulus (i.e., E or µ) is
assumed. The model of cardiac mechanics originally pro-
posed by Guccione et al. [3] uses three parameters similar
to E1, E3, and µ13 to describe small strain behavior, and
four parameters to describe nonlinear behavior. The strain
energy potential W for this model written in terms of the
orthotropic coordinate axes is:

W =
(

C

2

)
(eQ − 1),

Q = bf (ε2
33) + bi(ε2

33 + ε2
22 + 2ε2

12) + 2bfs(ε2
13 + ε2

23).(38)

where C, bf , bi, and bfs are the four independent material
constants. Elasticity reconstruction algorithms based on
ultrasonic strain and strain rate measurements in the heart
must produce the spatial distribution of these parameters.
Also, any elasticity imaging algorithm also must recon-
struct the orientation of the fiber axis (i.e., orthotropic
coordinate axis) at every position within the heart with
respect to the absolute coordinate frame used for defor-
mation analysis and modulus reconstruction.

VII. Summary

Elastic moduli in the passive heart estimated by dif-
ferent methods were compared. Moduli obtained from ul-
trasonic sound speed measurements are inconsistent with
those obtained by static deformation and low-frequency
shear wave methods. Both tissue fixation and the high-
operating frequency of ultrasonic measurements contribute
to these discrepancies. Moreover, the precision of ultra-
sonic sound speed measurements required to estimate elas-
tic moduli describing static deformations of a nearly in-
compressible, anisotropic medium such as the heart ap-
pears to be beyond the scope of current methods. We
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conclude that an incompressible, anisotropic elastic model
is appropriate for elasticity reconstruction in the heart,
in which three independent constants characterize small
strain behavior, but four are needed for a fully nonlinear
description of finite deformations.
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