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Abstract— Using the incompressibility property of soft tissue,
lateral displacements can be reconstructed from axial strain
measurements. Results of simulations and experiments on gelatin-
based tissue equivalent phantoms are compared with theoretical
displacements, as well as estimates derived from traditional
speckle tracking. Incompressibility processing greatly improves
the accuracy and signal-to-noise ratio (SNR) of lateral displace-
ment measurements compared with more traditional speckle
tracking.

1. INTRODUCTION

NUMBER of quantitative 2-D tracking techniques have

been proposed for ultrasonic displacement imaging. They
include optical flow [1], 2-D correlation [2], [3], and Fourier-
based methods [4]. Although all measure both axial (i.e., along
the beam direction) and lateral (i.c., perpendicular to the beam
direction) displacements, errors in the two components are not
the same. For an ultrasound system, the axial resolution is
limited by the system @ and the transducer frequency, whereas
the lateral resolution is limited by the beamwidth [5]. Thus,
lateral displacement estimates will be many times less accurate
than axial [6]. The accuracy of lateral tracking is especially
important in elasticity imaging, where, in general, all dis-
placement components and spatial derivatives are needed to
reconstruct the elastic modulus [7]. In the Appendix, the vari-
ance anisotropy of displacement estimates using correlation
methods is analyzed. With a constant f/number (f/num) system,
additive white noise, and a high signal-to-noise ratio (SNR),
the analysis shows that the variance of lateral displacement
estimates should be about 40 (f/num)? times worse than that
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of axial. To overcome this anisotropy, we propose to estimate
the lateral displacement using the incompressibility property
of soft tissue.

For any mechanical body, the divergence of the displace-
ment vector w is a measure of the volume change due to
deformation. Deformation produces no volume change in
incompressible materials, hence

V-u=0. (D

Previous studies have shown that soft tissues and tissue-like
materials can be well modeled as incompressible [8], [9].
Generally, for compressible media, this condition is valid with
an accuracy proportional to § = 0.5 — v, where v is the
Poisson’s ratio [10]. If (1) is used for slightly compressible
media, the relative error in displacement components will also
be proportional to § [10].

Using (1) for a deformed system, it is possible to reconstruct
one of the unknown components of u based on the two
others. As an initial test of the approach, we use a simplified
deformation, a plane strain state. The methods are general,
however, and can be extended for a 3-D strain state [11].

For an object in a plane strain state, the normal strain in
the out-of-plane direction is zero [12]. Note that this does
not assume that out-of-plane motion is zero, only that it is
uniform. This state can be approximated if the deformation of
the system is such that the out of plane strain components are
negligible compared to the others. For this state, (1) can be
reduced to a 2-D problem in the z—y plane

ou v

Oz * Ay
Here, u is the component of the displacement u in the
z—direction and v is the component in the y-direction. This
equation holds at every position in the plane.

Arbitrarily letting x be the lateral direction and y the axial
direction, (2) can be rewritten in terms of the normal strains

6zz(x7y) + 5yy(xa y) =0, 3)

where e,, is the normal axial component of the second
ranked symmetric strain tensor and ¢, is the normal lateral
component

=0. 2)

15}
Ezm(zvy) = 85 ( )7 (43)
z,y
dv
eyy(T,y) = S_y o) (4b)
z,y
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Along any given range ¥, (4a) can be integrated to reconstruct
the lateral displacement at that range

U($, yO) = / [Ezm (x/’ yﬂ)] d.’E/ + U(ﬂ?’o, yO) (5)

0

Using the incompressibility property expressed in (3), the
unknown lateral strain can be replaced by the measured axial
strain

w(@, y0) = / ey (s go)] do’ + u(z0,90).  (6)

0

Hence, the lateral displacement can be reconstructed using
measurements of the normal axial strain given the lateral
displacement at only one position along each range, u({xg, Yo)-

The continuous differential operator needed to compute
the normal axial strain from the axial displacement can be
approximated with finite differences. With this approximation,
the normal axial strain is proportional to the differential
axial displacement (i.e., eyy = AV/Azx). The variance in
the differential displacement, AV, is not more than two
times larger than the axial displacement variance. Consider-
ing that the measured lateral displacement variance is about
40 (f/num)? times the axial displacement variance (see the
Appendix), (6) suggests that more accurate estimates of the
lateral displacement can be obtained using incompressibility
processing. In the next section, we present a specific method
based on (6), and show that it yields more accurate lateral
displacement estimates compared to direct approaches such as
correlation-based speckle tracking.

II. INCOMPRESSIBILITY PROCESSING

In the limit of ideal measurements, lateral displacements
estimated from speckle tracking must be equivalent to those
estimated by (6). For imperfect measurements, the difference
in these two estimates produces an error £

E=u(z,y) — um(z,y), D

where w,,(z,y) is the “measured” lateral displacement ob-
tained from speckle tracking and u(z,y) is the lateral dis-
placement predicted by (6). For any given point (zo,%0), a
total squared error function, ®, based on (6) and (7) can be
defined as

Zp

D(zo,70) = E?dx

(e

2
+ u(zo,70) — um(f-,yo)} dz, (8)

where z, and z, are the extents of an arbitrary region of
interest (ROI). To estimate the lateral displacement at (zg, o)
based on this definition, the error function is minimized with

respect to u(zp, o). That is,

. 1 e
urs(Zo, o) = oo [2(z0,0)] = pr—— /
B a Jr,
) <um(x:y0) - / [_5yy<m/7yo)] dZ’I> d.’L’,
®

where urs(zo,yo) is the solution to the least squares min-
imization. Note that the position (zg,yo) is independent of
the choice of the ROI and that the spatial resolution in the
estimated lateral displacement is determined only by the spatial
resolution in lateral displacement and normal axial strain
measurements and not by the dimension of the ROL

The least squares etrror estimate defined in (9) uses both
lateral displacements and normal axial strains obtained from
speckle tracking. This estimate leads to markedly reduced
lateral displacement error if the measured normal axial strain is
significantly less noisy than the measured lateral displacement.
To understand this, consider a discrete realization of (9) where
both lateral and axial displacement images are discretized onto
a uniform grid (i.e.,, z = nA,y = mA, where A is the grid
step size). Choosing the ROI for least squares analysis as a
2M + 1 lateral window centered at position (ng,my), the
discretized approximation to (9) is

M
1
uLS(no,mo)Zm Z Um(no +k>m0)j|
k=—M
1 M k
/
] {A k:ZM an:o —eyy(no +n ,mo)}

(10)

where a simple finite difference approximation has been used
for the integrals. Combining terms in the double sum, this
expression reduces to

ULS(”OamO)
N 1
T oM +1

M
Z U (Mo + k’,mo)}

k=—M
M
Meyy(ng,mo) + ) (M +1~|k|)
k=—M

A

+2M+1

- eyy(no + k, mo)} . (11)

The variance in estimated displacements obtained from (11)
can be easily determined from a propagation of error analysis.
The first term in (11) represents the average displacement
over the ROI. To simplify the analysis, assume that the lateral
displacement noise in the ROI is additive and white. Then, the
variance in the first term of (11) is

o2

2
oLs, = QM:F (12)
where o2 is the variance in the measured lateral displacements.
Similarly, assuming that in the ROI the strain noise at all points
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is additive and white, then the variance in the second term of
(11) is
o2 (2M3 +15M? + 13M + 3)
Ls = 3(2M +1)2

A%cZ, (13)
where o2 is the variance in the measured normal axial strain.
If the noise processes are not white, which is true in practice,
then these terms must be modified to include correlation terms,
increasing their value.

If the normal axial strain is computed using a finite differ-
ence approximation, the strain variance is simply related to
the axial displacement variance

2
o2 2

e = R3O (14)

where o2 is the variance in the axial displacement, again
assuming independence. This value will be reduced if the noise
process is correlated. Using these expressions, and assuming
that the lateral displacement noise and axial strain noise are
uncorrelated, the variance in the estimated lateral displacement
based on (10) is

2 _ 2 2
0rs =0Ls, T OLs,
1 2

_ Y 202M3 4+ 15M2% + 13M + 3)
oM+

3(2M + 1)2 Tv-
(15)

In the limit that the number of points in the ROI is large (i.e.,
M > 1), the total variance can be approximated as

1 M
2
0is = ——— ol 4 o2

(16)

To quantify estimation error reduction with incompress-
ibility processing, the relationship between axial and lateral
displacement variance must be known. From the analysis in
the Appendix, o2 ~ 40 (f/num)?c2. Rewriting (15) with this
assumption yields

ofs _ 1 2(2M3 4+ 15M” + 13M + 3)
o2 T 2M+1  3(2M + 1)%(40 (f/num)?)
1 M
ot e e M7 0D

Reducing the variance in lateral displacement estimates
with incompressibility processing improves the SNR of lateral
displacement images. The SNR improvement is simply the
inverse of (17), i.e., SNR improvement = ¢2/0%. This
function is plotted in Fig. 1 for f/nums of 2, 4, and 8, where
the ROI width is 2M + 1. Note that for small values of M,
the first term of (17) dominates the potential gain in lateral
displacement SNR using incompressibility processing. The
influence of the second term can be seen for large M; it is
a strong function of the f/num of the system, or alternatively
of the strain noise variance.

As an initial test of incompressibility processing’s ability to
reduce lateral displacement error, a simple 1-D simulation was
performed. The discretized lateral displacement was assumed
to be 256 points long with A equal to 1 mm. Over the first
128 points this function was modeled as a straight line with
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Fig. 1. Theoretical improvement in lateral displacement SNR using incom-
pressibility processing.
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Fig. 2. One-dimensional simulation results comparing measurements and
incompressibility processed estimates of the lateral displacement.

slope equal to 0.1 mm per pixel, whereas over the second 128
points it was modeled as a straight line with slope equal to 0.25
mm per pixel. The magnitude of the displacement at point 128
was assumed to be 0 mm. For this function, the normal lateral
strain was 0.10 over the first 128 points and 0.25 over the
second 128 points. Thus, there was a strain discontinuity at
the central point.

A zero-mean uniformly distributed independent random
displacement error was added to each of the 256 displacement
values. The total function simulates the “measured” displace-
ment that would be obtained from speckle tracking. Similarly,
a zero-mean uniformly distributed independent random strain
error was added to each of the 256 strain values. The vari-
ance in the strain was o2 /(80A?), where o2 is the lateral
displacement variance. This error simulates strain noise for an
f/num of two (see the Appendix) where the incompressibility
condition was used to estimate the normal lateral strain (i.e.,
the normal lateral strain simply equals the negative of the
measured normal axial strain).

In Fig. 2, the “measured” displacement is compared to
the displacement estimated from (10), where an ROI of 31
mm (i.e., M = 15, near optimal for an f/num of two)
was used. These functions are presented over a small region
centered at the strain discontinuity. As expected, the estimated
displacement is a much smoother function than the measured.
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The sharp increase in slope (i.e., strain) is also preserved in the
region of the strain discontinuity, even though a large ROI was
used. Thus, no spatial resolution is lost with incompressibility
processing.

The results presented in Fig. 2 indicate that incompress-
ibility processing can be used to reduce error in lateral
displacements estimated by speckle tracking. In the next
section, we further test this assertion with experimental studies
on tissue equivalent gelatin phantoms.

III. EXPERIMENTAL METHODS

Experiments were performed on gelatin-based phantoms
using controlled surface deformations. These cylindrical gels
were constructed to quantitatively simulate the mechanical and
ultrasonic properties of soft tissue. Methods to fabricate them
are detailed in previous publications [7], [13]. Two phantoms
were used for an initial test of incompressibility processing.
One was an 88-mm diameter 140-mm long homogeneous
cylindrical phantom of 5.5% by weight gelatin. The other was
identical except that a cylindrical hole 32 mm in diameter was
made along the longitudinal axis and backfilled with 12% by
weight gelatin to simulate a hard inclusion. Ultrasonic scatter-
ing centers were created by adding polystyrene microspheres
to both gels.

The cylindrical axis of the gel was placed perpendicular
to the axis of a 1-D ultrasound transducer array imaging the
central plane of the phantom. The 82-mm wide 128-element
3.5-MHz array was attached to the bottom of a water tank,
used to ultrasonically couple the array and phantom. The
deformation was controlled with vertical displacement of a
hydraulically driven piston connected to a 14.2-mm wide rigid
rectangular block extending the entire length of the phantom.
As reported previously [7], [13], this deformation system
closely approximates a plane strain state in the region of the
imaging plane. The position of the piston was monitored by
the round-trip echo time to it from the two center elements
of the array.

Complex demodulated (in-phase and quadrature or I and
Q) images were reconstructed and the normal axial strain,
€4y, wWas computed using the methods of [4] and [13] with a
constant f/num of approximately three. The strain computation
uses a phase unwrapping technique to properly accumulate the
axial strain over a large set of small differential displacements
to produce a total strain image referenced to the final position
of the phantom. Thus large total displacements and strains can
be measured without speckle decorrelation due to strain. For
the results presented here, the vertical piston was displaced a
total of 6 mm over a set of 20 differential displacements of
0.3 mm each. The 2-D window used in the strain calculations
resulted in a spatial resolution of about 2.7 x 2.7 mm.
Additionally, differential axial and lateral displacements were
computed using a slight variation on the traditional 2-D
correlation technique of [6]. This 2-D technique was modified
to operate on the same complex (I and ()) images used in strain
calculations, rather than RF or envelope-detected data. Addi-
tionally, the 2-D window used for correlation tracking was the
same as that used for strain measurements. Both differential

Fig. 3.

Conventional B-scan image of one of the gel-based phantoms.

lateral and axial displacements were also accumulated properly
to produce total displacement images referenced to the final
position of the phantom.

Lateral displacements were also computed using incom-
pressibility processing. Along a given range, the displacement
was first estimated at the center pixel of the image employing
a finite difference approximation of (9), where a second-order
Taylor series expansion approach was used for integration.
The 25.2-mm wide (M = 64,A = 0.195 mm) ROI was
symmetric about this position. The calculation was repeated
with a symmetric ROI of the same size, stepping a pixel at a
time to the right, until reaching a lateral position where lateral
displacements measured from speckle tracking were greatly
in error [see Figs. 4(a) and 5(a)]. Large lateral displacement
errors are the direct result of imperfect beam forming in our
synthetic aperture system at large steering angles. To overcome
these imperfections, a finite difference approximation of (6)
was used to estimate the displacement for the remaining pixels
on this row to the right. The rightmost displacement estimate
calculated using (9) was used as the integration constant,
u(z0,40), in (6). A similar process was used for pixels to
the left of the image center. The overall process was repeated
for all ranges in the image. To test the accuracy of lateral
displacement estimates, theoretical displacements within the
phantom were computed using a finite difference method
reported previously in [7].

IV. EXPERIMENTAL RESULTS

In Fig. 3, a conventional B-scan of the homogeneous phan-
tom is shown in its final position, i.e., after the piston was
displaced vertically downward 6 mm. This image, and all
subsequent images, are displayed over a 100 x 100 mm
area with the piston located at the top of the image and the
transducer at the bottom. The B-scans are not of the best
quality, with significant artifacts outside and at the edges
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(b

Fig. 4. Lateral displacement images of the homogeneous gel-based phantom displayed over the same dynamic range: (a) traditional 2-D correlation speckle

tracking, (b) theoretical, and (c) incompressibility processing.

of the phantom, because synthetic aperture rather than full
phased array reconstruction was used. Even so, data are of
sufficient quality for accurate axial displacement and strain
measurements as described in [13].

Lateral displacements for the homogeneous phantom are
shown in Fig. 4. The images are displayed on the same linear
gray scale where mid-gray represents no motion, full white
motion 1.0 mm to the right, and full black motion 1.0 mm
to the left. The displacement measured using traditional 2-D
correlation speckle tracking is shown in Fig. 4(a). As noted
previously, there are significant artifacts in lateral tracking

due to poor synthetic aperture beamforming at the sides
of the phantom, corresponding to the maximum steering
angle. The theoretical displacement is shown in Fig. 4(b)
and the reconstructed displacement using the incompressibility
property is shown in Fig. 4(c).

Lateral displacements for the phantom with a single hard
inclusion are shown in Fig. 5 using the same quantitative gray
scale. Again, the displacement measured with speckle tracking
is shown in Fig. 5(a), theoretical results in Fig. 5(b), and the
reconstructed displacement in Fig. 5(c). The position of the
inclusion is clearly seen in Fig. 5(c).
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(@)

(b)

Fig. 5.

Lateral displacement images of the gel-based phantom with single hard inclusion displayed over the same dynamic range: (a) traditional 2-D

correlation speckle tracking, (b) theoretical, and (c) incompressibility processing.

A more quantitative comparison of these results is presented
in Fig. 6. Fig. 6(a) shows the three different lateral displace-
ment estimates along a single range for the homogeneous
phantom. The range chosen was a horizontal line passing
through the more accurate correlation tracking estimates above
the center of the cylindrical phantom. Fig. 6(b) displays the
lateral displacement estimated along the same range for the
phantom with a hard inclusion.

Variances of lateral displacement estimates using correlation
tracking and the incompressibility property were measured for
both phantoms. The variance of the lateral displacement was

calculated along a 60-mm long vertical line in the center of
the phantom. This region had the best correlation tracking
estimates and the true displacement along this line should
be constant due to symmetry, so that any variance in the
displacement should accurately reflect noise in these esti-
mates. Lateral displacements from correlation tracking and
incompressibility processing along this line are shown in
Fig. 7 for the homogenous phantom. For the homogeneous
phantom, the measured ratio of variances, Jﬁ / 0'% 5, was about
11.7. The ratio for the hard inclusion phantom was larger,
about 16.0.
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—-
£
E
-
c
o
£
@
5]
8
e — Theory
1 - Incomprgsssibi[ity
'''''' Correlation
—1545 . . . . : . . ;
~40 -30 -20 -10 0 10 20 30 40
Lateral Position (mm)
(@)
Lateral Displacement: Hard Inclusion Phantom
159. =z N
£
£
<
Pt
€
1)
E
@
o
8
a
—— Theory
-1 — = Incompresssibility
'''''' Correlation
-15 T T T : T T T T
-40 -30 -20 -10 0 10 20 30 40

Lateral Position (mm)
(®)

Fig. 6. Horizontal lateral displacement A-scans: (a) homogeneous phantom,
and (b) phantom with single hard inclusion.

V. DISCUSSION

Comparison of the lateral displacement images in Figs. 4
and 5 clearly shows that incompressibility processing signifi-
cantly improves the SNR over traditional correlation tracking.
This was quantitatively confirmed by SNR measurements. The
expected SNR improvement is difficult to estimate due to the
effects of correlation in the measured data which, for simplic-
ity, are not included in the discussion above. However, SNR
improvements can be estimated using data separated by the
autocorrelation half width (R, /2), representing approximately
independent values. Defining an effective ROI half width,
Meg = M/Ry5, (17) can be evaluated simply by replacing
M with M.g. For both phantoms, the autocorrelation half
width was about 15 pixels (=3 mm), resulting in an Mg
of about 4.3. Since the system used a constant f/num of three
for reconstruction, the expected SNR improvement should be
about nine. Measured SNR improvements were larger, about
11.7 and 16.0 for the two phantoms.

Differences between theoretical and incompressibility pro-
cessed displacements seen in Fig. 6 may be caused by inexact
modeling of experimental conditions, e.g., phantom and in-
clusion position and the relative Young’s modulus of the
inclusion, or underestimation of the lateral displacement by
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Fig. 7. Vertical lateral displacement A-scan for the homogeneous phantom.

correlation speckle tracking. Nevertheless, these plots along
with Fig. 7 clearly show that incompressibility processing can
greatly improve lateral displacements estimated by correlation
tracking.

Variations on the basic algorithms used for incompressibil-
ity processing will be explored. The least-squares estimate
presented here was based on a 1-D error term. Estimator
performance may improve if the algorithm is expanded to two
dimensions. Additionally, a weighted least-squares estimate,
where the weighting is a function of the correlation coefficient
from speckle tracking, will be explored. Such weighting may
significantly reduce the effects of inaccurate or high-variance
displacement estimates.

In general, to fully characterize deformations of an elastic
object, the complete strain tensor must be computed. For an
incompressible material in a plane strain state, the normal axial
strain and the shear strain are the only independent nonzero
components. The shear strain is defined as

1( ou

v
Eay(Z,Y) = eya(m,y) = ) 5@

oz (18)

(,y) (=,y)

The axial term, Jv/dz, in the unknown shear strain can be
estimated with high precision using phase sensitive tracking
techniques. Estimates of the lateral term, du/dy, computed
from spatial derivatives of noisy tracking measurements should
improve with displacements estimated by incompressibility
processing. In future studies, we will examine methods sim-
ilar to those presented in this paper to further reduce error
by directly estimating the lateral term in the shear strain
component.

Finally, it has not escaped our attention that these same
methods may be applied to color flow images. With slight
modification, it may be possible to accurately estimate flow
orthogonal to the ultrasound beam direction using incompress-
ibility processing, if out-of-plane flow gradients are small.

APPENDIX

Displacement variance can be approximated from an anal-
ysis of correlation errors [14]. Assuming that measurement
noise is additive and white and has a small magnitude with
respect to the signal, and that the powers of the two signals
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being correlated are the same, the variance of the fluctuation
of the peak position of the cross-correlation function £ can be
shown to be [15], [16]
.
¢ WSNR'
where W is the normalized second moment of the signal power
spectrum

(19

/w2|G(w)|2 dw
JEE

Although simplistic since it ignores decorrelation effects, this
model can give reasonable estimates of the relative variance
of displacement estimates if the correlation coefficient is close
to one.

To compute W in the axial direction, assume that the pulse
has a Gaussian envelope so that it has a Gaussian power
spectrum

W= 0)

|Gtime((d)|2 - Goe—(l/Q)((“’*wo)/D‘w)z_ @21

Using the properties of a normalized Gaussian function, the
pulse power and the second moment of the power spectrum
are easily determined to be

/lGnme(w)l2 dw = Goo, V2, (22)

/w2|Gtime(w)|2 dw = Goo,V2r(wi +02).  (23)

Consequently, the normalized second moment of the power
spectrum in the axial direction is simply

Weime = (0§ +03). 24

If we assume that the fractional bandwidth, denoted BW,
is defined as the full width half maximum power bandwidth
of the Gaussian power spectrum, then the variance of the
Gaussian can be rewritten as

2 (BWw0)2
% = "8m(2) 25
Equation (24) then becomes
BW?
ime — ¢ 1 .
Wes w0< + s (2)) (26)

To analyze the variance of ¢ as a function of space rather
than time, as shown above, the spatial power spectrum must
be computed. Using the identity

2 4
z2=—ct = w, =wi— => Wy =wg— = —,
2 c c A

where z is the axial distance, ¢ is the sound velocity, and A
is the wavelength, the normalized axial second moment of the

spatial power spectrum is
BW? )

4 2
Woaxial = (T) (1 + 81n (2)

To compute W laterally, assume continuous wave excitation
of a linear array of length L with no aperture apodization.

27

(28)

Then, the receive directivity function is the Fourier transform
of the aperture function

. sin (4)
Dr(sin (8)) = Dosm—(WL.—A—)«,
L (9)

A
where # is the angle from the array normal. Equation (29)
can be rewritten in terms of the lateral distance x using the
identity sin (§) = z/R, where R is the range. If the system
uses a constant f/num (f/num = R/L), then (29) becomes

29

sin (_m_)
D) = Dy—A/mum /. (30)
Af/num

Defining the lateral spatial frequency as w,, the lateral
receive directivity as a function of spatial frequency is simply
the Fourier transform

DA f/num, |w,|<

iy
Dpws) = Mg gy
0, el > Af/num.
For the best possible resolution, assume that the system is
dynamically focused on both transmit and receive so that the
transmit and receive directivity functions are identical. Then,
the transmit-receive directivity in the frequency domain be-

comes the convolution of the transmit and receive directivities

w
1— =2, 0<wy<wye

2 Cre
DTR(UJL.) = 27rD0)\f/num 1+ x , Wy < Wy <0’
wZC
07 |“)[ szc
(32)

where w,. = 2x/Af/num is the cutoff spatial frequency.
Consequently, the power spectrum of the lateral diffraction
pattern is

[Drr(w,)|? = (2rDEA £ /num)?

2
<1“ﬂ) . 0<wy < wae

wfl:(:
we ) (33)
1+ ,  —Wae <wg < 0.
w(EC
0, |Ww| > Wee

From (33), the total power and the second moment of the
lateral power spectrum can be computed

/|DTR(w2)|2dwz =2 w,o(2rDgAf/num)?, (34

/ w2 Drp(we)|? dwe = & w?, (20 DA E/num)?. (35)

So the normalized second moment of the lateral power spec-

trum is
2
1 27
Wa eral = T~ T .
fateral IO(Af/nunl) (36)
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The relative variance of lateral to axial displacement esti-
mates is simply the ratio of their respective variances

4T 1
(Ug)lateral — Wlateral SNRIateral _ Waxial SNRaxial
(Ug)axial Az 1 Wlatera.l SNRlateral
Waxial SNRaxial

(37

Assuming that the SNR’s are the same in both dimensions,
the relative variances become

(ng ) lateral

——— 38
(Ug)axial ( )

= 40(f/num)? [1 + B }

81n (2)

For a 40% fractional bandwidth system, the term in brackets
is only 1.03. By approximating this as one, the estimate of
the relative variance for lateral to axial displacements using
correlation techniques is

(0'52 )Iateral

~ 40(f /num)?.
(Ug)axial ( / )

(39
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