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Abstract—In tissue the Young’s modulus cannot be as-
sumed constant over a wide deformation range. For exam-
ple, direct mechanical measurements on human prostate
show up to a threefold increase in Young’s modulus over a
10% deformation. In conventional elasticity imaging, these
effects produce strain-dependent elastic contrast. Ignoring
these effects generally leads to suboptimal contrast (stiffer
tissues at lower strain are contrasted against softer tissues
at higher strain), but measuring the nonlinear behavior re-
sults in enhanced tissue differentiation.

To demonstrate the methods extracting nonlinear elas-
tic properties, both simulations and measurements were
performed on an agar-gelatin phantom. Multiple frames of
phase-sensitive ultrasound data are acquired as the phan-
tom is deformed by 12%. All interframe displacement data
are brought back to the geometry of the first frame to
form a three-dimensional (3-D) data set (depth, lateral, and
preload dimensions). Data are fit to a 3-D second order
polynomial model for each pixel that adjusts for deforma-
tion irregularities. For the phantom geometry and elastic
properties considered in this paper, reconstructed frame-
to-frame strain images using this model result in improved
contrast to noise ratios (CNR) at all preload levels, without
any sacrifice in spatial resolution. From the same model,
strain hardening at all preload levels can be extracted.
This is an independent contrast mechanism. Its maximum
CNR occurs at 5.13% preload, and it is a 54% improvement
over the best case (preload 10.6%) CNR for frame-to-frame
strain reconstruction. Actual phantom measurements con-
firm the essential features of the simulation.

Results show that modeling of the nonlinear elastic be-
havior has the potential to both increase detectability in
elasticity imaging and provide a new independent mecha-
nism for tissue differentiation.

I. Introduction

Larger deformations may have significant advantage
for elasticity imaging of soft tissue. For example, high

internal strain over the entire region of an elasticity im-
age can maximize the signal-to-noise ratio of the measured
strain field [1]. However, at larger deformations, most tis-
sues exhibit significant strain hardening, and the Young’s
modulus of tissue can no longer be considered constant
[2]–[4]. Direct measurements on human prostate, using a
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Fig. 1. Two-layer phantom; force-deformation curve for materials
(left) and phantom illustration (right). Data for the solid curve are
based on direct mechanical measurements of cortex/medulla of ca-
nine kidney; the dashed curve is for the collecting system.

system similar to [5], showed that, even within a modest
10% deformation range, there is an approximately three-
fold increase in Young’s modulus. Strain hardening can
significantly reduce the strain contrast between different
tissue types.

To illustrate the effect of strain hardening on im-
age contrast, consider elasticity imaging based on a lin-
ear one-dimensional (1-D) model of a two-layer phantom.
Fig. 1(left) shows the force-deformation relationship for
the materials in this phantom, with the solid curve rep-
resenting the top layer and the dashed curve the bottom
layer. In Fig. 1(right) phantom deformation between two
plates with a 1 N applied force is illustrated. The solid
curve in Fig. 1(left) indicates 7% strain at this force for
the stiffer top layer and the dashed curve 12.5% strain for
the softer bottom layer, resulting in a 9.75% overall defor-
mation.

Fig. 2 shows the effective Young’s modulus (i.e., slope of
differential stress versus differential strain at a particular
strain value) for the layers in the phantom. The elasticity
of the stiff top layer is measured at a relatively low 7%
strain; the elasticity of the softer bottom layer is measured
at 12.5% strain. In general, stiffer regions at low strain are
contrasted against softer regions at higher strain, which in
the presence of strain-hardening leads to reduced elastic
contrast. The material properties used in Figs. 1 and 2
are based on direct mechanical measurements of collecting
system and cortex/medulla samples of canine kidney [5].

In reality, the effects demonstrated here with a simple 1-
D model take place in 3-D, and thus are more complicated.
Full elasticity reconstruction relies on numerical solution
of the partial differential equations describing the mechan-
ical equilibrium of a deformed medium in which simplifi-
cations can be made assuming incompressibility and plain
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Fig. 2. Two-layer phantom, Young’s modulus. Data for the
solid curve are based on direct mechanical measurements of cor-
tex/medulla of canine kidney; the dashed curve is for the collecting
system.

strain states. Clearly, strain hardening is an important tis-
sue property and ignoring it may hurt image quality.

In addition to compensating for artifacts caused by
strain hardening, the phenomenon itself can be measured
and used to enhance tissue differentiation. In effect, it pro-
vides another contrast mechanism. In earlier experiments
[6], artificial lesions were created in a canine kidney with
gluteraldehyde. Mechanical measurements on these lesions
revealed that the cross-linking agent not only increased the
Young’s modulus, but also reduced strain hardening. In [7],
nonlinear elastic phantoms based on agar and gelatin were
constructed that exhibited a complete contrast reversal,
and a first-order fit procedure was performed to image the
average strain-hardening behavior over a 12% deformation
range. Varghese et al. [8] theoretically analyzed the effect
of nonlinearity on CNR in a frame-to-frame strain image
of a cylindrical inclusion. Contrast was calculated through
a contrast transfer efficiency model [9], and noise char-
acterized by a strain-filter model [10]. The optimal CNR
frame-to-frame applied strain could be determined, and
nonlinearity images were formed by subtracting frame-to
frame strain images at low and high preload levels. Further
refinements to the agar-gelatin phantoms were made, and
a finite-element model of the phantom was developed [11]
to verify our nonlinear elasticity algorithms. In-vivo exper-
iments by Hall et al. [12] showed that fibroadenoma in the
human breast gets relatively softer compared to surround-
ing tissue when preloads are increased, thus also exhibiting
reduced strain hardening. Strain-hardening behavior alone
can differentiate these lesions from surrounding tissue, and
it can be a valuable adjunct to elasticity imaging. In this
paper we build on these preliminary studies and demon-
strate that strain hardening can be extracted from large
deformation data acquired over many frames with a real-
time ultrasound system.

II. Methods and Materials

Direct mechanical measurements were performed on
agar (1.9% by weight) and gelatin (10%) by deformation of

Fig. 3. Direct mechanical measurements on agar (solid curve) and
gelatin (dashed curve).

a cylindrical sample (d = 14.3 mm, h = 12 mm) between
two plates, with a setup similar to that in [5].

The results in Fig. 3 show the agar exhibiting significant
strain hardening compared to gelatin. A five-parameter
Mooney-Rivlin strain-energy function [13], [14] was used
to characterize the nonlinear behavior of the agar, and a
two-parameter model was used for the nearly linear gelatin
over this deformation range. Special numerical procedures
[15] were used in extracting these parameters to account
for inaccurate measurements at low preload levels. For
gelatin, the two- and five-parameter models produce nearly
identical strain energy functions that are a good match
to the direct mechanical measurement, indicating that a
two-parameter model is sufficient to describe the elastic
behavior. Agar has a more nonlinear behavior, and only
the five-parameter model provided a good fit. The param-
eters are input to a finite-element simulation (ABAQUS,
version 5.5, Pawtucket, RI) mimicking a phantom defor-
mation experiment.

Fig. 4 shows the phantom geometry. It consists of a
block of gelatin (10% by weight) with a triangular shaped
bar of agar (1.9% by weight) embedded within it. Pure
agar and pure gelatin materials have limited bonding at
the material interface, and agar is prone to crack propa-
gation. With the geometry described here, larger deforma-
tions can be applied before the phantom will break, and
elastic contrast is primarily transferred to axial strain con-
trast due to the 45 degree angle of the material interface
(i.e., shear-strain contrast is minimized). Also, near the
material interface, axial strain and Young’s modulus are
inversely proportional [16] at small deformation levels (lin-
ear elastic approximation, plain strain assumption). This
phantom was deformed approximately 12% between plates
at the top and bottom, using a hyper-elastic incompress-
ible plain-strain model [17]. Due to the plain-strain model,
the simulation assumes the phantom has infinite size in 3-
D. In a physical experiment, the 3-D is finite, and the
imaging plane is chosen in the middle to more closely ap-
proximate the plain-strain condition. A mesh of 300 (axial)
by 150 (lateral) elements was used for the 10 cm × 10 cm
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Fig. 4. Phantom geometry for simulation and experiment. Dotted
box is region of interest for imaging.

plane. Results are shown for a 3.2 cm × 3.2 cm region of
interest marked by the dotted line in Fig. 4, correspond-
ing to a reasonable imaging region in a real experiment
when a linear array is used. The mesh size is chosen to
roughly match the lateral spatial resolution of the simu-
lation to the lateral speckle spot size in the ultrasound
phantom and has twice the spatial resolution in the axial
dimension.

Equal force increments (100 N/m2) are applied, and the
resulting displacement data are used to create 44 frames
of synthetic radio frequency (RF) data (360 beams × 1920
samples). The point-spread function (PSF) is based on a
35-mm aperture, 5.1 MHz center frequency array with 50%
fractional bandwidth. Data are sampled at 20 MHz to a 20-
mm depth. A frequency domain-based method convolves
the scatterers with the PSF. Phase sensitive speckle track-
ing results in 43 frame-to-frame measured displacement
fields. All frame-to-frame displacement fields are brought
back to the geometry of the first frame, using the accu-
mulated displacement from frame 1 to that frame. Thus, a
specific image location is always associated with the same
physical phantom part throughout all frames, allowing eas-
ier examination of local material behavior. The resulting
data can be viewed as a 3-D dataset with lateral (x), axial
(y), and preload (ε) dimension.

When the frame-to-frame displacement for a single im-
age location is examined as a function of preload, the shape
of the curve depends not only on the elastic behavior of the
phantom but also on the rate at which the phantom is de-
formed for different preload levels. In the case of free-hand
data acquisition, the nonuniformity in deformation speed
most likely would be the dominating factor in determining
curve shape. To overcome this problem, the displacement
fields are converted to relative displacement ratio’s (RDR),
defined as:

RDRx,y =
∆vx,y

∆vε
, (1)

Fig. 5. A 3-D polynomial fit is performed on the RDR data for each
pixel over a local region in the X and Y dimensions and all of the
preload dimension. Each frame in the sequence is warped to the
geometry of frame 1, using the accumulated displacement from frame
1 to that frame. This results in 18 fit coefficients for each pixel in the
image.

where vx,y is the axial (or lateral) displacement at a pixel,
and vε is the average axial displacement at the bottom of
the image. This effectively normalizes the frame-to-frame
displacements; values will be in the 0 to 1 range for all
frames independent of interframe strain levels.

As illustrated in Fig. 5, for each pixel a surrounding area
and all data in the preload dimension are taken to form a
3-D data subset. A 3-D, limited maximum variation order
4 (MVO = 4), polynomial fit is performed. Data at the cen-
ter of the x-y region are given more weight in the minimum
least square fit procedure, and weighting is reduced toward
the edges using a Hanning weighting window in the axial
and lateral dimensions. Along the preload dimension, all
data are weighted equally. The Hanning weighting ensures
smooth changes of the fit coefficients moving from pixel to
pixel. In the spatial frequency domain, it has lower side
lobes compared to a rectangular weighting window. For
each pixel there are now 18 fit coefficients modeling the
surrounding area as:

RDR(x, y, ε) = c1 + c2x + c3y + c4x
2 + c5xy + c6y

2

+ c7ε + c8xε + c9yε + c10x
2ε + c11xyε

+ c12y
2ε + c13ε

2 + c14xε2 + c15yε2

+ c16x
2ε2 + c17xyε2 + c18y

2ε2,
(2)

where x, y, and ε are the lateral, axial, and preload dimen-
sions. The midpoints for the x and y grids in the fit are
set to 0 for each new pixel, and the preload grid is based
on accumulated axial displacement at the bottom of the
image.

When the derivative of the RDR along the axial dimen-
sion is taken, we obtain the relative strain ratio (RSR).
The RSR at a pixel is defined as:

RSRx,y =
∆εx,y

∆εε
=

∆vx,y

∂y

∆vε/y0
=

∂RDRx,y

∂y
· y0, (3)

where εx,y is the normal axial strain (or normal lateral
strain) at a pixel, εε is the average normal axial strain
in the image, and y0 is the maximum depth of the im-
age (depth used for vε). Values below 1 indicate relatively
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soft areas; values above 1 indicate stiffer areas. The axial
derivative is taken analytically on the polynomial model,
resulting in lower noise compared to taking the derivative
numerically on displacement data. As we are interested
only in the derivative at the axial and lateral midpoints, x
and y are set to 0 and the derivative of (2) with respect to
y leads to the following expression for the relative strain
ratio:

RSR(x, y, ε) = (c3 + c9ε + c15ε
2) · y0, (4)

where x, y, and ε are the lateral, axial, and preload di-
mensions, and y0 is the same constant as in (2).

The relative hardening (RH) is obtained by taking the
negative derivative of the RSR along the preload dimen-
sion. The RH is an indicator of the rate at which a region
becomes stiffer or softer compared to the surrounding area
as total deformation increases. The sign reversal is for eas-
ier interpretation of the data; positive values indicate rel-
ative stiffening and negative values indicate relative soft-
ening.

RH = −∂RSR
∂ε

. (5)

This derivative is again taken analytically on the polyno-
mial of (4), leading to:

RH(x, y, ε) = (c9 + 2c15ε) · (−y0). (6)

Thus, to reconstruct RSR and RH images, only 3 of
18 coefficients are needed. The polynomial fitting proce-
dure is based on minimizing the square error between data
and fit by finding the coefficients for which the deriva-
tive of the error function is 0. This leads to 18 equa-
tions with 18 unknowns, and generally requires the in-
version of an 18 × 18 matrix. However, the perfect anti-
symmetry in the x and y grids cause exact cancellations
for many terms in the set of equations (a sparse 18 × 18
matrix). The equations decouple into four independent
groups involving (c2, c8, c14), (c3, c9, c15), (c5, c11, c17),
(c1, c4, c6, c7, c10, c12, c13, c16, c18). Only the second set
of coefficients is needed, and for pixel location X,Y can
be obtained using the matrix equation (7) (see next page).
The summations are over the local 3-D space surrounding
a pixel as shown in Fig. 5, in which the pixel is always made
the midpoint (x = 0, y = 0). In addition, the summations
are Hanning weighted in x and y dimensions [weighting is
not shown in (7)]. Any weighting functions on the summa-
tion are allowed, as long as they are symmetric in x and y
around the middle point (x, y = 0, 0).

Note that all variables in the matrix are independent
of the pixel chosen (pixel is always made midpoint of x
and y grid), so the inverse matrix needs to be calculated
only once. The vector on the right does depend on pixel
position (variables X, Y ) due to changing RDR functions.
The y, yε, and yε2 terms are precalculated once, so each
pixel needs three multiply accumulate operations over the
small region shown in Fig. 5. This is a fairly low compu-
tational cost, negligible compared to the speckle tracking
computations.

Fig. 6. Relative strain ratio (RSR) and relative hardening (RH) im-
ages based on simulated displacements in an agar and gel phantom.
Rows are for preloads of 0.2%, 5.13%, and 10.6%, respectively. The
left column has raw frame-to-frame strain images normalized to RSR.
The center column is the RSR reconstructed from 3-D polynomial
fit coefficients, and the right column is the RH image reconstructed
from fit coefficients. The RSR images are displayed over a 0.5–1.4
dynamic range, and the RH images are displayed over a −15 to 15
dynamic range. Dotted boxes in the bottom right image indicate
regions used for CNR calculations.

A real phantom experiment was performed on a Siemens
elegra using a 5.1 MHz linear array, collecting 36 RF
frames (360 beams × 920 samples) in a 4 × 4 cm imag-
ing region. The phantom has extra fine graphite powder
(1.3% by weight, average particle size of 9 µm) as an ultra-
sonic scattering material, and bleach (0.2% by weight) is
added as a preservative. Gelatin (10% by weight) is poured
first, and after setting serves as a mold for the agar. By
cooling the gelatin to 5◦C and pouring the agar (1.9% by
weight) at 60◦C, slight mixing of phantom materials near
the boundary occurs. In addition, the gelatin has 1-mm
grooves at its boundary to further facilitate mixing; this is
necessary for sufficient bonding between phantom materi-
als.

III. Results

Fig. 6 shows images based directly on simulated dis-
placement data from ABAQUS over a 3.2-cm × 3.2-cm
region of interest (Fig. 4). The left column has frame-
to-frame strain images scaled to conform to RSR images
at preloads of 0.2%, 5.13%, and 10.6%. All displacement
data were brought back to the geometry of the first frame.
Strains were calculated using a local 2-D, first-order poly-
nomial fit around each pixel, giving a 1.6-mm × 1.4-mm
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(7)

axial by lateral spatial resolution. At the low 0.2% preload
level, the agar is much softer than the gelatin, resulting
in a high, relative-strain ratio for the inclusion. Increasing
the preload to 5.13% and 10.6% causes strain hardening
in the agar, and complete contrast reversal takes place.
Small irregularities can be seen in the RSR images. They
are caused by the limited numerical precision of the non-
linear, finite-element simulation and have a nearly random
behavior.

The center column in Fig. 6 shows RSR images, based
on the analytical derivative of a 3-D polynomial fit to the
RDR data. The axial and lateral window sizes used for
the 3-D fit were chosen such that the spatial resolution of
the left and center columns would be identical. Note that
these images are nearly identical to the left column, except
that the numerical precision irregularities are absent. An-
alyzing the difference between the left and center columns
showed randomly behaving zero mean noise with increased
magnitude at depth; no bias was introduced.

The right column in Fig. 6 shows the RH images; it is
the analytic derivative of the RSR sequence in the cen-
ter column with sign reversal (6). The spatial resolution
matches that of the first two columns. The agar is initially
soft with high RSR values that decrease rapidly under
higher preload. Thus the slope of the agar RSR starts out
large negative (∼ −15) leading to positive (∼15) RH val-
ues. The gelatin RSR starts out low and increases, giving
positive slopes (negative RH). For this particular phantom
geometry and material behavior, the highest RH contrast
is achieved at low preload, and contrast is gradually re-
duced as preload is increased.

The highest contrast for RSR is at the lowest and high-
est preload levels, and the best contrast for the RH image is
at low preload. However, what really matters is the CNR.
In the presence of tracking noise, optimal preload levels
may change. Thus, synthetic RF data were generated and
speckle tracking was performed to find the displacement
fields. As the real displacements for the synthetic RF data
are known, accurate CNR analysis could be performed.
Also, as the exact error signal is known, the width of its

TABLE I
Contrast-to-Noise Ratios for Synthetic RF Dataset.

1

Preload [%] 0.2 1.37 2.82 5.13 7.25 10.6
CN raw RSR 1.47 0.98 0.90 0.88 1.30 2.22
CNR fit RSR 4.21 2.59 0.45 2.08 3.75 5.21
CNR fit RH 4.89 5.47 6.49 8.03 5.36 1.61

1Rows have raw frame-to-frame strain, relative strain ratio recon-
structed from fit, and relative hardening reconstructed from fit.
Columns are for increasing levels of preload. Corresponding images
are in Fig. 7.

autocorrelation at half-maximum can be used to find the
spatial resolution.

The dashed lines in the bottom right image of Fig. 6
show the two regions used in the CNR calculations. The
formula used for CNR calculation is:

CNR =
|m1 − m2|√
std12 + std22

, (8)

where m1 and m2 are mean signal levels in the areas con-
trasted, and std1 and std2 are the standard deviations of
the noise in those areas.

Fig. 7 shows the RSR and RH images based on syn-
thetically generated RF data. All images are over the
same region of interest and at the same spatial resolution
(1.6 mm × 1.4 mm) used in Fig. 6. Comparing the raw
frame-to-frame strains in the left column to the fit-based
RSR images in the center column, noise reduction at all
preload levels was achieved. The right column with RH
images has its highest contrast at low preload. However,
as preload was increased, the noise decreased at a faster
rate than the contrast, and the optimal CNR was achieved
at 5.13% preload.

Table I shows the CNR values for the images in Fig. 7
(see Fig. 6 for regions used in CNR calculation). For the
RSR images, the maximum CNR levels are at 0.2% and
10.6% preload, and the CNR is improved by more than a
factor of 2 over their raw frame-to-frame strain counter-
parts. The best case RH image is at preload 5.13%. Its
CNR of 8.03 is a nearly fourfold improvement over the
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Fig. 7. Relative strain ratio (RSR) and relative hardening (RH) im-
ages based on synthetically generated RF data from an agar and gel
phantom. Rows are for preloads of 0.2% to 10.6% as noted. The left
column has raw frame-to-frame strain images normalized to produce
the RSR. The center column is the RSR reconstructed from 3-D
polynomial fit coefficients, and the right column is the RH image re-
constructed from fit coefficients. The RSR images are displayed over
a 0.5 to 1.4 dynamic range, and the RH images are displayed over a
−15 to 15 dynamic range.

RSR image at that preload (nine times better than raw
strain). At all but the highest preload level, RH outper-
forms RSR. Best case RH beats best case RSR by a fac-
tor 1.5 and best case raw strain by a factor of 3.6. These
results are, of course, for the specific geometry and phan-
tom materials considered in this paper. In general, RH is
expected to outperform RSR when some material has sig-
nificantly more strain hardening than surrounding areas;
but, for low preload levels it is not significantly stiffer than
the surrounding area. As RH provided superior contrast,
the trade-off between CNR and spatial resolution was in-
vestigated.

Fig. 8(a) shows the best-case RH at a spatial resolution
of 0.6 mm × 0.6 mm. This is approximately the spatial res-
olution of the RF data (the speckle spot size), and matches
the Hanning weighted kernel and filter sizes used in the

(a) (b)

Fig. 8. Relative hardening image from synthetically generated RF
data, at preload of 5.13%: (a) high resolution (0.6 mm × 0.6 mm);
(b) low resolution (1.6 mm × 1.4 mm).

correlation processing. Even at a resolution matching the
imaging system, a CNR of 2.92 is obtained, outperforming
the frame-to-frame strains at much lower resolution shown
in Fig. 7. Fig. 8(b) shows the best case RH at a spatial res-
olution of 1.6 mm × 1.4 mm (axial, lateral), with a CNR
of 8.03. Clearly, RH imaging can be useful in both CNR
and spatial resolution improvement.

A real agar/gelatin phantom was constructed to further
test the algorithms. Compared to the simulated geome-
try, the inclusion is a little closer to the transducer, and
the angle at the tip of the inclusion is slightly larger than
90 degrees. These deviations are caused in part by melt-
ing and remixing of the gelatin when the agar inclusion is
poured. It should be noted that, at the material bound-
aries, there is a significant area containing both agar and
gelatin. Furthermore, the Young’s modulus of gelatin has
a strong temperature dependence around room tempera-
ture, and the real phantom is not a pure plane strain case
(although close). Sound speeds in the phantom materials
are not equal [8], causing slight diffraction of the imaging
beam. Due to these factors, an exact match with the sim-
ulation should not be expected; the experiment merely is
a qualitative comparison to theory.

Fig. 9 shows best case results; Figs. 9(a) and (b) are
RSR at low and high preload, and Fig. 9(c) is RH at
6.36% preload. At the low and high preloads, high-stress
regions are generated near the boundary due to strong dif-
ferences in material behavior, and imperfect bonding may
be responsible for the high RSR values seen there. Because
the real (not measured) displacements needed to calculate
exact CNR numbers are not available, 2-D, second-order
polynomial fits in the regions used for CNR calculation are
used as references instead. As a test, that same CNR cal-
culation method also was applied to synthetic data, and
found to always be within 5% of the exact CNR values.
For low (0.6%) and high (11.9%) preload, the CNR of the
RSR are 1.81 and 1.97, respectively; the RH image has a
CNR of 2.48. The CNR for raw frame-to-frame strain im-
ages at preloads of 0.6%, 6.36%, and 11.9% are 1.71, 0.35,
and 1.47, respectively. The best case RH has a 26% im-
provement over the best case RSR and 45% improvement
over the best-case, raw frame-to-frame strain.
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(a) (b) (c)

Fig. 9. Experiment on real agar and gelatin based phantom: (a) relative strain ratio at 0.6% preload; (b) relative strain ratio at 11.9%
preload; (c) relative hardening at 6.4% preload.

IV. Discussion

This work demonstrates that modeling of the nonlin-
ear elastic behavior can increase differentiation between
different material types. Larger deformations can increase
SNR [1], [18], but due to nonlinear elastic effects decrease
contrast and CNR as well. Nonlinear processing can over-
come this limitation, improving the quality of traditional
frame-to-frame strain images. In addition, a new contrast
mechanism of relative hardening is a natural product of
this processing.

All results presented here were for a two-component
phantom consisting of a nearly linear material (gelatin)
and a nonlinear material (agar) [19]. For this simple
system, the simulations show that the best case CNR
for frame-to-frame strain images is improved more than
twofold (2.22 to 5.21), and imaging RH can generate a
CNR of 8.03. This is all without sacrificing spatial res-
olution. Alternatively, nonlinear modeling can be used to
increase spatial resolution. Increasing the resolution to the
size of the B-scan speckle spot still leads to a better CNR
for RH compared to best case raw strain while reducing
the area of the resolution cell by a factor of 6.

This paper only shows RSR and RH images at several
preload levels; for best results, movies of RSR and RH
(where preload is encoded as time) should be used. The
preload level at which optimal CNR is achieved depends
both on material behavior and geometry, and thus can
change for different regions of the image. Movies capture
all this information.

Future work will include direct mechanical measure-
ments on tissue to identify pathologies in which nonlinear
elasticity imaging can be particularly effective in enhanc-
ing CNR. Further improvements in the algorithm can be
made through adaptive weighting schemes in the 3-D fit.
Frame decimation techniques can be used to optimize the
frame-to-frame strain for each region in the image and im-
prove the SNR [20]. The ultimate goal of elasticity imag-
ing is to obtain scalar parameters describing the nonlinear
elastic behavior for each pixel in the image, from local elas-
ticity reconstructions independent of boundary conditions.
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