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Abstract—Deep venous thrombosis (DVT) and its se-
quela, pulmonary embolism, is a significant clinical prob-
lem. Once detected, DVT treatment is based on the age of
the clot. There are no good noninvasive methods, however,
to determine clot age. Previously, we demonstrated that
imaging internal mechanical strains can identify and possi-
bly age thrombus in a deep vein. In this study the defor-
mation geometry for DVT elasticity imaging and its effect
on Young’s modulus estimates is addressed. A model-based
reconstruction method is presented to estimate elasticity
in which the clot-containing vessel is modeled as a layered
cylinder. Compared to an unconstrained approach in re-
constructive elasticity imaging, the proposed model-based
approach has several advantages: only one component of
the strain tensor is used; the minimization procedure is
very fast; the method is highly efficient because an ana-
lytic solution of the forward elastic problem is used; and
the method is not very sensitive to the details of the ex-
ternal load pattern—a characteristic that is important for
free-hand, external, surface-applied deformation. The ap-
proach was tested theoretically using a numerical model,
and experimentally on both tissue-like phantoms and an
animal model of DVT. Results suggest that elasticity re-
construction may prove to be a practical adjunct to triplex
scanning to detect, diagnose, and stage DVT.

I. Introduction

In previous publications [1]–[3] we have demonstrated
that imaging internal mechanical strains not only iden-

tifies thrombus in a deep vein, but also it may be able
to age the thrombus. In particular, we have proposed
a triplex ultrasound imaging method combining conven-
tional B-scan and blood flow modalities with elasticity
scanning to detect, diagnose, and stage deep venous throm-
bosis (DVT) [3].

Deep venous thrombosis, and its sequela, pulmonary
embolism, is a significant clinical problem, representing
the leading cause of preventable, in-hospital mortality in
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the United States and other developed countries [4]. The
symptomatic indication of DVT is always confirmed by ob-
jective tests; the most common test is duplex ultrasound
combining gray-scale, color-flow Doppler, and compression
ultrasound [5]. In previous studies [3], we demonstrated
that high-quality strain images can be obtained during ve-
nous compressional ultrasound. Moreover, if the deforma-
tion geometry is carefully controlled, these images alone
can differentiate acute from chronic DVT.

The distinction between acute and chronic DVT is clin-
ically important. A patient with acute DVT is treated
with heparin followed by oral anticoagulants, and one with
chronic DVT is treated with oral anticoagulants alone be-
cause the stronger anticoagulant and anti-inflammatory
effects of heparin are not required [6]. Furthermore, one
would like to avoid the use of heparin if at all possible.
Heparin is a powerful anticoagulant that must be injected,
and it has a higher risk of bleeding than oral anticoagu-
lants. In fact, studies have shown that the risk of bleeding
with heparin is 11% during the first 5 to 10 days of ther-
apy [7]. Consequently, translating our initial findings into
a robust, reproducible elasticity imaging technique to age
DVT will have an immediate and significant clinical im-
pact.

In this study, we address DVT reconstructive elastic-
ity imaging and how the geometry of the clot containing
vein and surrounding tissue affects elasticity estimates. To
make triplex ultrasound a routine clinical procedure, elas-
ticity information most probably will be acquired during
free-hand scanning and compression. To test for a blood
clot in the femoral vein, for example, compression ultra-
sound is performed by “marching down” a subject’s leg,
imaging the femoral vein in transverse orientation while
simultaneously deforming the vein with the scanhead [2],
[3]. If a venous thrombus is not present, the walls of the
vein quickly coapt before the adjacent artery collapses. If
a thrombus is present, the arterial walls coapt before the
vein’s [5]. A clot can extend for a few up to many centime-
ters along the vein. Using visual feedback from real-time
ultrasound images, the applied deformation can be con-
trolled to approximate a plane strain state through the
cross section of a vein with an elongated clot. However,
the in-plane deformation geometry is very hard to control
using free-hand scanning.

The effects of geometry and boundary conditions on
DVT elasticity images was analyzed using a simple model
of thrombus elasticity. The vein containing the clot is mod-
eled as an inhomogeneous elastic cylinder inside incom-
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pressible surrounding tissue, where the Young’s modulus
of the object (clot, vein, and surrounding tissue) is as-
sumed to be an unknown function of spatial coordinates.
More precisely, the vein containing the clot is approxi-
mated by an inhomogeneous cylinder with modulus being
only a function of the radial coordinate. After developing
this model in Section II, we demonstrate that uncontrolled
in-plane deformations can lead to greatly reduced contrast
in normal strain images. This result strongly implies that
strain images alone cannot differentiate acute from chronic
DVT if the in-plane deformation is not carefully controlled.

Using this same model, we also derive the solution to
the forward elastic problem for an arbitrary planar defor-
mation (i.e., superposition of uniaxial and shear loads).
This general analytic solution then is used to reconstruct
the unknown Young’s modulus of the object in a region of
interest (ROI) based on the iterative comparison of theo-
retically predicted and ultrasonically measured longitudi-
nal strain tensor components. The Young’s modulus dis-
tribution providing the best agreement is assumed as the
distribution of elastic properties inside the clot, vein wall,
and surrounding tissue. This reconstruction procedure can
overcome the limitations of strain imaging for an arbitrary
in-plane deformation.

The proposed approach is tested first using numerically
simulated inhomogeneous objects modeling the clot. Maps
of the longitudinal component of the strain tensor are
input to the elasticity reconstruction procedure. Recon-
structed elasticity images are shown to closely match the
initially prescribed elastic properties of the vein wall, clot,
and surrounding tissue.

The reconstruction procedure then is tested using mea-
sured maps of the longitudinal component of the strain
tensor acquired from tissue-equivalent phantoms approxi-
mating the three-component clot model in which the vein
contains either an acute (soft) or chronic (hard) clot. The
reconstructed Young’s modulus distribution is compared
with the results of direct measurements of the elastic prop-
erties of the phantom materials. Again, reconstructed elas-
ticity images closely match predictions.

The reconstruction procedure is tested using longitu-
dinal strain tensor fields measured in an animal model
(Sprague-Dawley rats) of DVT. Results of reconstructed
relative elasticity distributions clearly show that acute and
chronic clots can be differentiated. The paper concludes
with a discussion of the applicability of the proposed re-
construction methods to triplex scanning procedures to
detect, diagnose, and stage DVT in the clinic.

II. Theory

A. Forward Problem

Elasticity reconstruction can be posed in many differ-
ent ways. In general, all displacement and strain compo-
nents are needed to reconstruct the spatial distribution
of the Young’s modulus [8]–[11]. Unlike many other ap-

plications, however, the geometry for DVT reconstruction
is well defined. The shape, location, and margins of the
vessel containing the clot are well-known from B-scan im-
ages. Therefore, a model-based approach with a reduced
set of unknown parameters may prove useful for this ap-
plication to reconstruct the spatial elasticity distribution
over a small ROI containing the vessel with the clot.

Here we assume that the clot-containing vessel can be
modeled as a long cylinder (i.e., cylinder length at least
several times larger than the cross-sectional diameter of
the vessel). We use a cylindrical coordinate system (r, φ, z),
in which the origin of the coordinate system is placed at the
center of a cylindrically symmetric vessel, and the z-axis
is aligned parallel with the vessel’s longitudinal axis. For
this configuration, the elastic modulus distribution across
the imaging plane is assumed simply to be a function
of radial position over a small region of interest around
the clot. External loading does not vary, or changes very
slowly, along the length of the cylinder such that the out-
of-plane displacement uz is either zero or small compared
to the other two displacement components (radial ur and
azimuthal uϕ), and the in-plane displacement components
do not vary significantly as a function of the out-of-plane
coordinate z. That is, we assume a plane strain state [12].
Based on previous experimental studies on both an an-
imal model of DVT and initial human studies, a plane
strain state appears to be a reasonable approximation for
free-hand DVT scanning [3], [13].

Our basic approach has two steps. First, we derive the
solution of the forward elastic problem in which the elastic
properties of the object are known and the displacement
and strain fields must be determined. Second, we use the
solution of the forward problem to estimate the unknown
Young’s modulus spatial distribution in a small ROI based
on an iterative comparison of theoretically predicted and
ultrasonically measured longitudinal strain tensor compo-
nents.

For a plane strain state, in-plane components ur and
uϕ of the displacement vector �U are functions only of r

and ϕ, and uz = 0 [i.e., �U = (ur, uϕ, 0)]. Hence, the two-
dimensional (2-D) equations of static equilibrium must be
satisfied [12]:

⎧⎪⎨
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where σst is one component of the second ranked stress
tensor. Assuming linear elasticity, the components of the
stress tensor in an isotropic, continuous compressible
medium are:

σst = λθδst + 2µεst s, t = r, ϕ,

λ =
Eν

(1 − 2ν)(1 + ν)
, µ =

E

2(1 + ν)
,

θ = div�U = εrr + εzz + εϕϕ,

(2a)
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(2b)

where δst is the Kronecker delta symbol, λ and µ are the
longitudinal and shear elastic modulus, respectively, ν is
the Poisson’s ratio, E is the Young’s modulus, and εst is
a component of strain tensor. The solution of the forward
elastic problem (1), (2) for a compressible medium con-
taining a homogeneous cylindrical inclusion under uniaxial
load was originally presented in [14].

Most soft tissues and tissue-liked materials are very
close to incompressible [15], i.e., the longitudinal elastic
modulus λ is very large compared to the shear modulus
and the divergence θ is very small. The product λθ is fi-
nite and is recognized as the internal pressure in an incom-
pressible, or nearly incompressible, material. This product
must be eliminated from the equilibrium equations to sta-
bilize elasticity reconstruction [11], [16]. Here we consider
only incompressible media, i.e., Poisson’s ratio equals 0.5,
leading to the following simplification of (2):

θ = div�U = 0,

σst = P δst + 2µεst

s, t = r, ϕ,

P = lim
λ→∞
θ→0

λθ,

(3)

where P is the static internal pressure. Also, for incom-
pressible media µ = 3E and only one modulus (µ) de-
scribes the elastic properties of the material.

The generalization of Goudier’s solution for uniaxially
loaded incompressible media having an inhomogeneous
cylindrical inclusion is presented in [8]. Here we present
solutions to this problem for inhomogeneous objects un-
der both uniaxial and shear-type loads.

First, consider uniaxial loading of the object for the case
in which the direction ϕ = 0 is parallel to the direction
of an applied deformation, as illustrated in Fig. 1. The
solution of the forward problem (1)–(3) for a homogenous
medium in this case has the form: uy = ε0y, ux = −ε0x, in
Cartesian coordinates (x, y), in which the direction ϕ = 0
is parallel to the y direction, and ur = ε0r cos(2ϕ), uϕ =
−ε0r sin(2ϕ) in cylindrical coordinates (r, ϕ). Here ε0 is
the normal strain applied at infinity.

Noting these forms for the homogeneous case, the so-
lution of (1)–(3) for a uniaxially loaded inhomogeneous
medium has been found in [8]:

ur = u(r) cos(2ϕ),
uϕ = v(r) sin(2ϕ),
P = p0(r) + p1(r) cos(2ϕ).

(4)

Here p0(r) and p1(r) are unknown functions of r with u(r)
and v(r) components.

Fig. 1. Schematic representation of DVT deformation in which a
blood clot containing vessel is modeled as a long cylinder. The direc-
tion of external loading is parallel to the axial direction of ultrasound
beam. The centers of both cylindrical (r, ϕ) and Cartesian (x, y) sys-
tems of coordinates are placed in the center of the vessel, and the
z-axis is aligned with the longitudinal axis of the vessel. The region of
interest is divided in multiple rings with constant Young’s modulus
Ei within each ring.

Using the incompressibility condition, the displacement
components are related as:

v = −1
2

(
u + r

du

dr

)
. (5)

As noted in [8], assuming that E = E(r), substituting
(4) and (5) into (1)–(3) and eliminating the pressure, an
equation coupling u(r) and E(r) is obtained:

r4 d4u

dr4 + a3r
3 d3u

dr3 + a2r
2 d2u

dr2 + a1r
du

dr
+ a0u = 0,

(6)

with

a0 = 3(r2Γ + γr + 3),

a1 = r2Γ − 7γr − 9,

a2 = r2Γ + 7γr − 3,

a3 = 2(3 + γr),

where

γ =
1
E

dE

dr
, Γ =

1
E

d2E

dr2 .

At infinity, the inclusion cannot influence the deforma-
tion pattern. Consequently, the boundary condition for (6)
at infinity should be the same as for loading a homogeneous
medium. Hence:

u(0) = 0 and lim
r→∞

[
u(r)

r

]
→ ε0, (7)

where ε0 is the uniform normal strain at infinity.
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Because the deformation of soft tissues in vivo can be
modeled, in general, by a combination of uniaxial and
shear-type loads, the forward problem for shear-type load-
ing of an inhomogeneous object must be solved in addition
to the solution presented above. For shear-type loading
of a homogeneous object, when the x-axis (see Fig. 1) is
parallel to the direction of an applied deformation, the
solution of the forward problem (1)–(3) has the form:
uy = 0, ux = 2ε1y, in Cartesian coordinates (x, y) and
ur = −ε1r sin(2ϕ), uϕ = −ε1r[1 + cos(2ϕ)] in cylindrical
coordinates (r, ϕ). Here ε1 is the shear deformation applied
at infinity.

Noting these solutions for the homogeneous case, we at-
tempt to find the solution of (1)–(3) for an inhomogeneous
medium of form:

ur = u(r) sin(2ϕ),
uϕ = v0(r) + v1(r) cos(2ϕ),
P = p0(r) + p1(r) sin(2ϕ).

(8)

The incompressibility condition in this case leads to:

v1 =
1
2

(
u + r

du

dr

)
. (9)

Substituting (8) and (9) into (1)–(3) two equations are
obtained to determine the unknown functions u and v0.
For unknown u the equation has the same form (6) as
the case of normal loading. For unknown v0 the following
equation must be solved:

γ

(
dv0

dr
− v0

r

)
+

(
d2v0

dr2 +
1
r

dv0

dr
− v0

r2

)
= 0.

(10)

The general solution of this equation is:

v0 = A

[
(γ − 1/r)e−γr + rγ2

∫
e−γr

r
dr

]
+ Cr,

where A and C are arbitrary constants.
Noting that the value v0(0) must be finite, the solution

of (10) takes the form v0 = Cr. Like the normal loading
case, the boundary condition for (6) at infinity should be
the same as shear loading of a homogeneous medium:

u(0) = 0 and lim
r→∞

[
u(r)

r

]
→ −ε1, (11)

where ε1 is the uniform shear strain at infinity. Therefore,
in both cases (uniaxially or shear-type loaded object) if the
distribution E(r) is known, the forward problem is reduced
to solving a single ordinary differential equation, i.e., (6).
That is, (6) is the general equation coupling the elasticity
distribution with the magnitude of the radial displacement
independent of the deformation type.

To solve (6), various numerical procedures can be
used (for example, Runge-Kutta method). However, if the
Young’s modulus is constant within some interval [r1, r2],

the analytic solution of (6) can be derived. In this case,
the coefficients ai are constant and (6) has the form:

r4 d4u

dr4 + 6r3 d3u

dr3 − 3r2 d2u

dr2 − 9r
du

dr
+ 9u = 0.

(12)

The solution in this interval reduces to:

u(r) = Ar + Br3 +
C

r
+

D

r3 , (13)

where A, B, C, and D are arbitrary constants. This fact
can be used to greatly simplify the procedure to recon-
struct E(r).

To find the general solution of (6) for arbitrary E(r)
over a ROI, we assume that the Young’s modulus is con-
stant within each subinterval [ri, ri+1], i.e., we assume that
E(r) = Ei = const, r ∈ [ri, ri+1], i = 1 . . .N , where N is
the total number of subintervals covering the region of in-
terest (see Fig. 1). Therefore, (13) becomes:

u(r) = Air + Bir
3 +

Ci

r
+

Di

r3 , i = 1 . . .N.
(14)

In general, the values Ei and unknown constants Ai, Bi,
Ci, and Di are different for each ring [ri, ri+1]. These un-
known constants can be found using boundary conditions
(7) or (11) and the stress and displacement continuity con-
ditions at the ring boundaries:

[σrr]r=ri = 0, [σrϕ]r=ri = 0,

[ur]r=ri = 0, [uϕ]r=ri = 0,
(15)

where the notation [f ]r=ri means fr=ri+∆ − fr=ri−∆ for
vanishing ∆. Note that any continuous function E(r) can
be accurately approximated in this way. The solution of
(6) is greatly simplified because only the linear system
of algebraic equations for unknowns Ai, Bi, Ci, and Di,
i = 1 . . .N needs to be solved to find the solution of the
forward elastic problem.

It is well-known that signal-to-noise ratio (SNR) of axial
displacement measurements is higher than that of lateral
displacements [17]–[19]. Here we will use only one exper-
imentally measured axial (in Cartesian coordinates) com-
ponent of the strain tensor εyy = ∂uy

∂y to solve the inverse
problem.

The form of the analytic solutions to the forward elas-
tic problems can be used to further simplify DVT elastic-
ity reconstruction based on measured images of εyy (i.e.,
εexp

yy ). First, using the approach presented above, one can
conclude that the distribution εyy corresponding to uni-
axial loading along the line having the angle α + π/4 and
the distribution corresponding to shear deformation per-
pendicular to the line having the angle α are the same
if ε0 = −ε1. Therefore, shear-type loading need not be
treated separately but can be replaced by a corresponding
uniaxial loading.
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Fig. 2. Schematic representation of DVT deformation. In this model,
the external load is applied at an angle α relative to the axial di-
rection of an ultrasound beam. Indeed, during free-hand triplex ul-
trasound, the direction of the surface applied deformation may not
coincide with the axial direction of the ultrasound beam.

Second, the set of uniaxial loadings εk
0 , k = 1 . . .K along

the different axes αk
0 can be replaced by one effective uni-

axial loading ε0 along a certain axis α where:

|ε0| =

⎧⎨
⎩

[
K∑

k=1

εk
0 cos (2αk)

]2

+

[
K∑

k=1

εk
0 sin (2αk)

]2
⎫⎬
⎭

1/2

,

tan(2α) =
K∑

k=1

εk
0 sin (2αk) /

K∑
k=1

εk
0 cos (2αk) .

More complex deformations, when several uniaxial and
shear loadings are applied, can be reduced to one uniaxial
loading at a certain angle. Therefore, to model longitudinal
strain fields within the object, only one uniaxial effective
deformation ε0 applied along the angle α is needed (Fig. 2).

B. Inverse Problem

Having experimentally measured the axial strain com-
ponent εexp

yy and using the analytic solution of the for-
ward problem for a given deformation, elasticity recon-
struction can be posed as a minimization problem. Given
the Young’s moduli over a set of rings, the center of the ves-
sel (x0, y0) (i.e., the origin of the coordinate system), the
angle α and the effective deformation at infinity ε0 applied
along this angle, we can compute the theoretical distribu-
tion of axial strain. The unknown Young’s modulus Ei can
be estimated by minimizing the difference between the-
oretically predicted and experimentally measured strain
images [13]. In general, α, ε0, and the center (x0, y0) of
the vein also are unknown and must be estimated simul-
taneously with the unknown Ei by minimizing the error
function. Therefore, the error function takes the form:

δ =
∥∥εexp

yy − εtheory
yy (Ei, ε0, α, x0, y0)

∥∥ , (16)

and elasticity reconstruction reduces to a simultaneous
minimization of the error function of (16) with respect
to the unknown elasticity distribution, the position of the
origin of the coordinate system, the direction of the effec-
tive uniaxial loading of the object, and the magnitude of
the net effective deformation along this direction.

Although the loading angle α must be estimated as part
of the reconstruction procedure, its value does not greatly
affect the reconstructed elasticity distribution over a wide
angular range. This can be explained as follows. The an-
alytic solution for the longitudinal strain component for
uniaxial loading in Cartesian coordinates is:

εtheory
yy = ε0[R sin(2α) + Q cos(2α)],

where

R =
x y

2r5

(
r2 − 2y2)(

3u − 3r
du

dr
+ r2 d2u

dr2

)
,

Q = − 1
r5

[
3ux2y2 + r

du

dr

(
x4 − x2y2 + y4) + r2 d2u

dr2 x2y2
]

,

x = x − x0, y = y − y0,

and u(r) is the solution of (6) corresponding to the bound-
ary condition lim

r→∞

[
u(r)

r

]
→ 1 (i.e., unit strain at infinity).

As part of the error minimization procedure, the partials
of the error function with respect to α and ε0 must satisfy
∂δ/∂ε0 = 0 and ∂δ/∂α = 0, which leads to:

α =
1
2

arctan
ψ2ϕ2 − ψ3ϕ1

ψ2ϕ1 − ψ1ϕ2
,

ε0 =
sin(2α)ϕ1 + cos(2α)ϕ2

sin2(2α)ψ1 + 2 sin(2α) cos(2α)ψ2 + cos2(2α)ψ3
,

where

ψ1 =
∫
S

R2ds, ψ2 =
∫
S

RQds, ψ3 =
∫
S

Q2ds,

ϕ1 =
∫
S

εexp
yy Rds, ϕ2 =

∫
S

εexp
yy Qds,

and S is the area of the ROI.
By substituting these results for unknowns α and ε0

into (16), the error function depends only on the origin of
Cartesian coordinates and u(r). Therefore, the unknown
elasticity distribution E(r) is coupled with u(r) by the
basic differential equation in (6) independent of the angle
α, and the quality of elasticity reconstruction (i.e., contrast
in terms of elasticity) depends only on the SNR in εexp

yy

images.
To further understand the effect of the uniaxial defor-

mation angle α on normal strain images, the analytic so-
lution for the case of a homogenous cylindrical inclusion
of Young’s modulus E1 bounded within an otherwise ho-
mogenous medium with Young’s modulus E0 = E1/2 is
presented in Figs. 3 and 4. Fig. 3 show images of the ver-
tical normal strain εyy at several different values of the
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Fig. 3. Images of the normal, axial strain component (εyy) of a ho-
mogeneous cylindrical inclusion that is two times harder than an
otherwise homogeneous background. In the analytical solution used
to create these images, the external load was applied at (left) α = 0,
(center) α = π/8, and (right) α = π/4 relative to the axial direction
of an ultrasound beam. The strain profiles along the dotted lines are
presented in Fig. 4.

Fig. 4. Strain profiles through the vertical lines denoted in strain
images in Fig. 3 are contrasted for quantitative comparison.

deformation angle α. Note that almost all contrast is lost
as α approaches π/4. Profiles of single lines through these
same images are presented in Fig. 4. Again, note the al-
most complete loss of contrast at α = π/4. That is, if the
net in-plane deformation can be approximated as a uniax-
ial load at angle α = π/4, the inclusion is barely detectable
by strain images alone. Model-based elasticity reconstruc-
tion is independent of α, consequently, full contrast can be
recovered. Of course, reconstruction of the elasticity distri-
bution is limited by the SNR in εexp

yy images. Nevertheless,
elasticity reconstruction can recover contrast even as α dif-
fers significantly from 0. This is especially important for
free-hand external loading, which most probably will be
used in clinical experiments.

Unknown scalar parameters were estimated numerically
using (16) by an iterative minimization procedure similar
to the one used in [16]. One unknown was varied at a
time, and iterative parameters which determine step size
were chosen taking into account the second order polyno-

Fig. 5. Strain image and corresponding reconstructed elasticity image
of DVT. The strain distribution was obtained using finite-element
simulation (left) of the modeled DVT where the relative Young’s
modulus ratio for surrounding tissue, vessel wall, and clot is 1:2:0.5,
respectively. The resulted strain distribution was then used as input
into the reconstruction to obtain the elasticity image (right) that is
closely depicting the original Young’s modulus distribution.

mial approximation of δ as a function of each individual
Ei under the restriction of decreasing error. If successful
on a step, the global linear prediction for all unknowns
simultaneously was used after each iteration to reduce os-
cillation. As discussed in [16], this iterative minimization
procedure is accurate and fast. The time needed to solve
each particular problem is less than one minute on a low-
end computer for a reasonable number of layers (≤ 50).

III. Simulation

As an initial test of the reconstruction procedure out-
lined above, finite element 2-D simulations were performed
on a simple model of DVT elasticity. This model assumed
a finite thickness blood vessel of elastic modulus E1 sur-
rounded by a homogeneous medium with elastic modulus
E0. The lumen of the vessel contained a homogeneous clot,
and the elastic modulus E2 was varied to simulate both
acute and chronic cases. All studies presented here used
a commercial software package (Abaqus, HKS Inc., Paw-
tucket, RI) to solve the forward problem given the elas-
ticity distribution and the boundary conditions. The com-
puted noise-free axial strain tensor component εyy(x, y)
across the uniaxially loaded object were used as input for
elasticity reconstruction. An acute clot was modeled with
surrounding tissue, vessel wall, and clot having relative
Young’s moduli of 1:2:0.5, respectively. On the top and
bottom of the 30-mm by 30-mm phantom, a constant uni-
axial deformation was assumed, and the sides of the object
were assumed to be free. To solve the forward problem, a
200 by 200 element grid was used. Results of the numer-
ical simulation acted as εexp

yy (x, y) in (16) to estimate the
elasticity distribution. Forty-one rings were used to recon-
struct the elasticity. Note that the boundaries ri of these
rings do not need to match the prescribed boundaries of
the wall and clot.

Fig. 5 shows the strain image output by the finite el-
ement simulation (left) with the reconstructed elasticity
distribution (right). In Fig. 6 a profile through the center of
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Fig. 6. Young’s modulus distribution along a central vertical line of
the reconstructed elasticity image presented in Fig. 5 contrasted with
the original Young’s modulus distribution used to generate input
data for an elasticity reconstruction. Overall, reconstructed elastic-
ity is in quantitative agreement with the original Young’s modulus
distribution.

the reconstructed image is compared to the actual modulus
distribution used to produce the simulated strain image.
Clearly, the reconstructed distribution closely matches the
Young’s modulus distribution used in the forward problem.
Nearly identical results were obtained as the angle α was
swept over ±45◦. Of course, reconstructions near α = ±45◦

are meaningless for real data with finite SNR. Neverthe-
less, these results clearly indicate that the proposed recon-
struction method is not highly sensitive to the form of in-
plane loading. In addition, the influence of the boundary
conditions on reconstruction is minimal, suggesting that
model-based approach performs well for objects of finite
size.

IV. Phantom Measurements

As a further test of the proposed reconstruction proce-
dure, experiments were performed on a set of two tissue-
equivalent gelatin phantoms modeling the DVT geome-
try. Each phantom was constructed in three steps. First a
125-mm by 100-mm by 75-mm rectangular homogeneous
phantom was constructed using 6% by weight gelatin (300
Bloom type-A, Sigma Co., St. Louis, MO) and 0.5% by
weight microspheres acting as ultrasonic scatterers (Am-
berlite Strongly Acidic Cation Exchanger, Sigma Co.).
Second, a cylindrical hole 30 mm in diameter and 125 mm
in length was made in the center of the phantom. It was
filled with 12% by weight gelatin and 1% by weight micro-
spheres to simulate a vessel wall. Third, a 19-mm diameter
hole extending the length of the phantom was made in the
center and filled with either 4% or 8% by weight gelatin
and 0.5% by weight graphite flakes (Extra Fine Graphite,
American Grease Stick Co., Muskegon, MI) to simulate
soft (acute) and hard (chronic) clots. Both phantoms were
constructed at the same time, and experiments were per-

Fig. 7. Result of reconstructive elasticity imaging of acute (top) and
chronic (bottom) DVT mimicking phantoms. The 40-mm by 40-mm
B-scans (left column) are centered on the vessel and demonstrate the
geometry of the hyperechoic vessel wall and hypoechoic blood clot.
A 25% average surface deformation was applied to produce inter-
nal strains in the phantoms (center column). The strain distribution
was used to reconstruct the Young’s modulus distribution for both
phantoms (right column) with a maximum number of layers not ex-
ceeding 21 for each phantom. Note that in both phantoms the clots
are asymmetrically positioned within the veins; the model-based re-
construction assumes and, therefore, produces circularly symmetric
elasticity maps.

formed shortly after the phantoms were manufactured to
avoid any undesired and uncontrolled changes in elasticity
due to gel aging.

To deform the phantoms, the ultrasound array trans-
ducer was placed vertically into a custom holder attached
to a unidirectional positioning slider (Velmex Inc., Bloom-
field, NY) controlling vertical motion. Each phantom was
centered in a tank so that the image plane of the trans-
ducer approximated the central plane, perpendicular to
the longitudinal axis of the phantom. The tank was filled
with water to provide contact between the array and phan-
tom.

A Siemens Sonoline “Elegra” scanner (Siemens Medical
Systems, Inc., Issaquah, WA) with a linear transducer ar-
ray operating at 5 MHz (5.0HDPL40) was used to image
and collect frames in real-time during continuous surface
deformation. The average deformation of both phantoms
was about 25%, and 83 frames were collected during the
deformation. Strain images were obtained from these data
using an adaptive, two-dimensional, phase-sensitive corre-
lation speckle tracking algorithm [20], [21]. The correlation
was computed using complex baseband signals with a ker-
nel size of 1.28 mm (lateral) by 0.5 mm (axial). Complex
correlation coefficients were filtered using a 1.28 mm (lat-
eral) by 1 mm (axial) separable Hanning filter.

The ROI for reconstruction was chosen using B-scans.
The B-scan and corresponding strain images of the phan-
tom with soft and hard clots are presented in Fig. 7 (left
and center columns, respectively). The size of the ROI was
chosen as 40 mm by 40 mm. The Young’s modulus was re-
constructed by minimizing the error function (16) across
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Fig. 8. Quantitative comparison of Young’s modulus profiles
through central line of elasticity images in Fig. 7. The sur-
rounding tissue, vessel wall, soft and hard clot were produced
using 6%, 12%, 4%, and 8% gelatin concentrations, respec-
tively. The relative Young’s modulus for these concentrations were
1.0:(2.65 ± 0.25):(0.5 ± 0.05):(1.53 ± 0.1), respectively, as deter-
mined independently by direct mechanical measurements. Clearly,
reconstructed elasticity quantitatively agreed with independently
measured elasticity of phantom materials.

the ROI. Elasticity reconstruction starts with a homoge-
neous cylindrical inclusion (one layer), then the number of
layers increases. The process is terminated when the rel-
ative difference between the last two steps becomes less
then 2%. The maximum number of layers was 21 for each
phantom.

The central profiles through the reconstructed elastic-
ity images for the two phantoms are presented in Fig. 8.
Approximately the same ratio of the elastic modulus of
surrounding tissue to that of the wall is reconstructed in
both cases, but the reconstructed Young’s moduli of the
clots differ.

To verify the results of elasticity reconstruction, the
Young’s modulus of the different phantom components was
measured using a force-deformation system described in
detail in [22]. Samples 75 mm by 25 mm by 50 mm in
size were compressed by 15–20% such that a known sur-
face displacement was produced. The resulting force was
measured with a precision electronic balance. Boundary
conditions for the samples were controlled to maintain
a plane strain state. The relative Young’s modulus for
gelatin concentrations of 4%:6%:8%:12% were estimated
as (0.5 ± 0.05):1.0:(1.53 ± 0.1):(2.65 ± 0.25). Again, the
results of reconstruction are in good agreement with the
results of independent direct measurements of the elastic
properties of the phantom materials.

V. Animal Experiments

Animal studies were performed using a rat model of sta-
sis induced venous thrombosis [23], [24]. Sprague-Dawley
(Rattus norvegicus) rats (Harlan Sprague-Dawley, Inc.,
Indianapolis, IN) were anesthetized with isofluorane gas

Fig. 9. Results of reconstructive elasticity imaging in Sprague-Dawley
rats with stasis-induced acute (top) and chronic (bottom) DVT. The
B-scans (left column) and images of axial strain (middle column) are
displayed over the 4.5-mm by 3.7-mm ROI including a clot containing
IVC, aorta, and a small portion of surrounding tissue. The strain im-
ages, displayed from −55% to −10%, suggest a significant difference
between soft, 2-day-old clot (top) and hard, 9-day-old DVT (bot-
tom). Elasticity images further confirm this observation but allow
quantitative analysis of blood clot and vessel wall.

mixed with oxygen by a nose cone. Once anesthetized, a
midline laparotomy was made, the small bowel was moved
slightly to the left of the animal, and the inferior vena cava
(IVC) was approached directly by careful blunt dissection.
The IVC was ligated just below the level of the renal veins,
with side and back branches also carefully isolated and lig-
ated to ensure blood stasis and consistent thrombus for-
mation, which occurs in over 90% of cases done by this
method [23].

The animals then were kept for either 2 days or 9 days,
corresponding to acute and chronic intervals, before un-
dergoing ultrasound elasticity imaging studies. All animals
developed clots as confirmed at the conclusion of the imag-
ing studies, when rats were sacrificed and thrombosis was
qualitatively characterized.

Prior to the imaging procedure, animals were anes-
thetized with isofluorane. A Siemens “Elegra” scanner
with a linear, 7.5 MHz array ultrasound transducer
(7.5L40) was used to image and collect several hundred
consecutive frames of digital phase-sensitive ultrasound
signals in real-time during continuous deformation of the
rat’s abdominal wall and underlying tissue. Details of this
experiment are described in [4], [5]. Fig. 9 presents B-
scans of acute (2-day) and chronic (9-day) clots (left col-
umn), the images of normal axial strain (center column)
displayed from −55% to −10%, in which full black cor-
responds to −55% strain and lower, and full white corre-
sponds to −10% strain and higher, and the results of elas-
ticity reconstruction (right column). All images in Fig. 9
are 4.5 mm by 3.7 mm. The frame-to-frame displacements
were computed using complex baseband signals with a cor-
relation kernel size of 1.0 mm (lateral) by 0.2 mm (ax-
ial). The kernel size was chosen based on the full width
at half maximum of its autocorrelation. To reduce peak
hopping errors due to small kernel size, the adjacent cor-
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Fig. 10. Changes in elasticity contrast between vessel wall and blood
clot due to the invalidity of the circular cross-section assumption
used in the developed elasticity reconstruction model. In these finite-
element simulations of the elliptically shaped vessel, the relative wall-
to-clot Young’s modulus Ewall/Eclot was set to 4, and the eccentric-
ity of the vessel with occluding blood clot was varied. The resulting
strain images then were used in the elasticity reconstruction assum-
ing a circular geometry of DVT. The resulted elasticity contrast is
presented as a function of ellipse eccentricity suggesting that, for
small deviations in geometry, the developed elasticity reconstruction
technique is sufficient for quantitative aging of the blood clot.

relation functions were filtered using a 1.5 mm (lateral)
by 1.0 mm (axial) separable Hanning filter. Axial strains
were computed from accumulated axial displacements us-
ing a simple 1-D difference filter along the axial direction
for correlation windows separated by 0.4 mm. The angle α
was estimated as 11.7◦ for the acute case and −20◦ for the
chronic case, small values consistent with the controlled
nature of the deformation used for these studies. Acute
and chronic clots clearly have very different elastic moduli.
The chronic clot is harder by over an order of magnitude
than the acute clot. Although further studies are needed to
corroborate this initial result, the reconstructed images in
Fig. 9 suggest that relative elasticity reconstruction may
be able to age DVT.

VI. Discussion

All the results presented here assumed that the clot
cross section was circular. This clearly was not the case
for both phantom and animal studies. This also will not
be the case for clinical scans. To test the valid range of the
circular cross-section assumption, we used finite element
simulations to create a set of strain fields for an elliptical
model of DVT. These strain images were input to the re-
construction program assuming a circular DVT geometry.
Results of the clot’s Young’s modulus reconstruction are
presented in Fig. 10 as a function of ellipse eccentricity. For
this simulation, the relative Young’s modulus Ewall/Eclot
was assumed to be 4. For eccentricities reaching approx-
imately 1.7, the error in the reconstructed elasticity is
small. Above this value, the error smoothly increases at
a fairly slow rate. An eccentricity of 1.7 is much larger

than that seen in the animal studies presented here, and it
is larger than expected in clinical studies based on the lim-
ited set of human scans done to date [13]. Consequently,
the circular cross-section assumption is not expected to
produce significant errors in reconstruction of the relative
Young’s modulus in human DVT.

It is also interesting to note that, in the human case,
the posterior surface against which the pushing or defor-
mation is performed is the femoral shaft. This distal sur-
face is not flat and parallel to the ultrasound scanhead
face, as is assumed in this model, but it is actually curved
itself. Pushing against this curved surface will inevitably
introduce components of shear in any deformation. The
resistance of the described method to such effects should
further add to the robustness of this technique in vivo.

This study also assumed that the clot’s elastic proper-
ties are circularly symmetric (i.e., independent of angle).
This is clearly not the case for a complex, heterogeneous
clot. The symmetry assumption tends to average the elas-
tic modulus, imposing an artificial low-pass filtering on the
reconstructed image. This should not be a large practical
concern because the primary motivation of the proposed
reconstruction procedure is to properly represent the aver-
age elastic contrast between clot, vein wall, and surround-
ing tissue independent of loading details.

The model-based reconstruction technique presented
here uses an analytic solution. This solution was derived
under the assumptions of small strains in linear elastic
materials. These assumptions, however, are not valid for
large deformations. We demonstrated previously [16] that
linear and nonlinear strain models of elasticity reconstruc-
tion are possible, where both approaches produced com-
parable results up to internal strain magnitudes of about
20%. Internal strains in our numerical and phantom ex-
periments were in this range. The strains in animal studies
were larger, indicating underestimated elasticity contrast
if linear strains were used in elasticity reconstruction.

Another important problem for DVT aging is estimat-
ing the absolute value of the Young’s modulus. With the
present approach we can obtain only the relative Young’s
modulus reconstruction. For ultimate application as a
general diagnostic technique, absolute elasticity may be
needed. One approach is to include into the reconstruc-
tion procedure the information about the distribution of
surface stress or pressure in response to surface applied
deformations. Future work will focus on this possibility
to create a robust method of triplex scanning to detect,
diagnose, and stage human DVT.

VII. Conclusion

The proposed model-based approach to DVT elasticity
reconstruction has some clear advantages: only one com-
ponent of the strain tensor is used; the minimization pro-
cedure is very fast and stable given the small number of
unknown scalar parameters derived from an analytic so-
lution of the forward elastic problem; and it is not highly
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sensitive to the details of external loading, a character-
istic especially important for free-hand external loading.
The approach was demonstrated using numerical simula-
tions and measurements on both tissue-equivalent phan-
toms and an animal model of DVT. These results suggest
that elasticity reconstruction may prove to be a practical
adjunct to triplex scanning to detect, diagnose, and stage
human DVT.
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